Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Publications

Search Publications by

Andrew C. Wilson (Fed)

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 1 - 24 of 24

Measurement of electric-field noise from interchangeable samples with a trapped-ion sensor

November 18, 2021
Author(s)
Kyle McKay, Dustin Hite, Philip D. Kent, Shlomi S. Kotler, Dietrich Leibfried, Daniel Slichter, Andrew C. Wilson, David P. Pappas
We demonstrate the use of a single trapped ion as a sensor to probe electric-field noise from interchangeable test surfaces. As proof of principle, we measure the magnitude and distance dependence of electric-field noise from two ion-trap-like samples with

High-fidelity laser-free universal control of trapped ion qubits

September 8, 2021
Author(s)
Raghavendra Srinivas, Emanuel Knill, Robert Sutherland, Alexander T. Kwiatkowski, Hannah M. Knaack, Scott Glancy, David J. Wineland, Shaun C. Burd, Dietrich Leibfried, Andrew C. Wilson, David T. Allcock, Daniel Slichter
Universal control of multiple qubits—the ability to entangle qubits and to perform arbitrary individual qubit operations—is a fundamental resource for quantum computing, simulation and networking. Qubits realized in trapped atomic ions have shown the

Quantum amplification of boson-mediated interactions

May 13, 2021
Author(s)
Shaun C. Burd, Raghavendra Srinivas, Hannah M. Knaack, Wenchao Ge, Andrew C. Wilson, David J. Wineland, Dietrich Leibfried, John J. Bollinger, David T. Allcock, Daniel Slichter
Strong and precisely controlled interactions between quantum objects are essential for quantum information processing\citeSackett2000,Majer2007}, simulation\citeBritton2012}, and sensing\citeHosten2016a,Cox2016}, and for the formation of exotic quantum

State Readout of a Trapped Ion Qubit Using a Trap-integrated Superconducting Photon Detector

January 6, 2021
Author(s)
Susanna L. Todaro, Varun Verma, Katherine C. McCormick, David T. Allcock, Richard Mirin, David J. Wineland, Sae Woo Nam, Andrew C. Wilson, Dietrich Leibfried, Daniel Slichter
We detect fluorescence photons emitted by a single $^9$Be$^+$ ion confined in a surface- electrode rf ion trap, using a superconducting nanowire single photon detector integrated directly into the trap. We achieve a qubit readout fidelity of 99.91(1) %

Ion transport and reordering in a two-dimensional trap array

May 19, 2020
Author(s)
Yong Wan, Robert Jordens, Stephen Erickson, Jenny Wu, Ryan S. Bowler, Ting R. Tan, Panyu Hou, Andrew C. Wilson, Dietrich Leibfried
Scaling quantum information processors is a challenging task, requiring manipulation of a large number of qubits with high fidelity and a high degree of connectivity. For trapped ions, this could be realized in a two-dimensional array of interconnected

Laser-free trapped-ion entangling gates with simultaneous insensitivity to qubit and motional decoherence

April 29, 2020
Author(s)
R. T. Sutherland, Raghavendra Srinivas, Shaun C. Burd, Hannah M. Knaack, Andrew C. Wilson, David J. Wineland, Dietrich Leibfried, David T. Allcock, Daniel Slichter, S. B. Libby
The dominant error sources for state-of-the-art implementations of laser-free trapped-ion entangling gates are decoherence of the qubit state and motion. The gate error from these decoherence mechanisms can be suppressed with additional control fields, or

Quantum Logic Spectroscopy with Ions in Thermal Motion

April 16, 2020
Author(s)
Daniel Kienzler, Yong Wan, Stephen Erickson, Jenny Wu, Andrew C. Wilson, David J. Wineland, Dietrich Leibfried
A mixed-species geometric phase gate has been proposed for implementing quantum logic spectroscopy on trapped ions, which combines probe and information transfer from the spectroscopy to the logic ion in a single pulse. We experimentally realize this

Quantum-enhanced sensing of a mechanical oscillator

July 22, 2019
Author(s)
Katherine C. McCormick, Jonas Keller, Shaun C. Burd, David J. Wineland, Andrew C. Wilson, Dietrich Leibfried
The use of special quantum states in interferometry with bosons to achieve sensitivities below the limits established by classical-like coherent dates back decades and has enjoyed immense success since its inception. Squeezed states, number states, and cat

Quantum amplification of motion of a mechanical oscillator

June 21, 2019
Author(s)
Shaun C. Burd, Raghavendra Srinivas, John J. Bollinger, Andrew C. Wilson, David J. Wineland, Dietrich G. Leibfried, Daniel H. Slichter, David T. Allcock
Detection of the weakest forces in nature and the search for new physics demand increasingly sensitive measurements of the motion of mechanical oscillators. However, the attainable knowledge of an oscillator’s motion is limited by quantum fluctuations that

Coherently displaced oscillator quantum states of a single trapped atom

June 11, 2019
Author(s)
Katherine C. McCormick, Jonas Keller, David J. Wineland, Andrew C. Wilson, Dietrich Leibfried
Coherently displaced harmonic oscillator number states of a harmonically bound ion can be coupled to two internal states of the ion by a laser-induced motional sideband interaction. The internal states can subsequently be read out in a projective

Quantum gate teleportation between separated zones of a trapped-ion processor

May 31, 2019
Author(s)
Yong Wan, Daniel Kienzler, Stephen D. Erickson, Karl H. Mayer, Ting R. Tan, Jenny J. Wu, Hilma H. Macedo De Vasconcelos, Scott C. Glancy, Emanuel H. Knill, David J. Wineland, Andrew C. Wilson, Dietrich G. Leibfried
Large-scale quantum computers will inevitably require quantum gate operations between widely separated qubits, even within a single quantum information processing device. Nearly two decades ago, Gottesman and Chuang proposed a method for implementing such

Trapped-ion spin-motion coupling with microwaves and a near-motional oscillating magnetic field gradient

April 26, 2019
Author(s)
Raghavendra Srinivas, Shaun C. Burd, R. T. Sutherland, Andrew C. Wilson, David J. Wineland, Dietrich G. Leibfried, David T. Allcock, Daniel H. Slichter
We present a new method of spin-motion coupling for trapped ions using microwaves and a magnetic field gradient oscillating close to the ions' motional frequency. We demonstrate and characterize this coupling experimentally using a single ion in a surface

Versatile laser-free trapped-ion entangling gates

March 28, 2019
Author(s)
R. T. Sutherland, Raghavendra Srinivas, Shaun C. Burd, Dietrich Leibfried, Andrew C. Wilson, David J. Wineland, David T. Allcock, Daniel Slichter, S. B. Libby
We present a general theory for laser-free entangling gates with trapped-ion hyperfine qubits, using either static or oscillating magnetic-field gradients combined with a pair of uniform microwave fields symmetrically detuned about the qubit frequency. By

VECSEL systems for generation and manipulation of trapped magnesium ions

November 8, 2016
Author(s)
Shaun C. Burd, David T. Allcock, Tomi Leinonen, Jussi-Pekka Penttinen, Daniel H. Slichter, Raghavendra Srinivas, Andrew C. Wilson, Robert Jordens, Micrea Guina, Dietrich G. Leibfried, David J. Wineland
Experiments in atomic, molecular, and optical (AMO) physics rely on lasers at many different wave- lengths and with varying requirements on spectral linewidth, power and intensity stability. Vertical external-cavity surface-emitting lasers (VECSELs), when

Single-frequency 571 nm VECSEL for photoionization of magnesium

June 3, 2016
Author(s)
Shaun C. Burd, Tomi Leinonen, Jussi-Pekka Penttinen, David T. Allcock, Daniel H. Slichter, Raghavendra Srinivas, Andrew C. Wilson, Micrea Guina, Dietrich G. Leibfried
We report the development of an intracavity-frequency-doubled VECSEL emitting at 571 nm for photoionization of magnesium. The laser employs a V-cavity geometry with a gain chip at the end of one cavity arm and a lithium triborate (LBO) crystal for second

Optically pumped semiconductor lasers for atomic and molecular physics

February 7, 2015
Author(s)
Dietrich G. Leibfried, Shaun Burd, Andrew C. Wilson, David J. Wineland
Experiments in atomic, molecular and optical (AMO) physics rely on lasers at many different wavelengths and with varying requirements on spectral linewidth, power and intensity stability. Optically pumped semiconductor lasers (OPSLs), when combined with

Single-Mode Optical Fiber For High-Power, Low-Loss UV Transmission

August 8, 2014
Author(s)
Daniel H. Slichter, Yves Colombe, Andrew C. Wilson, Dietrich G. Leibfried, David J. Wineland
We report large-mode-area solid-core photonic crystal fibers made from fused silica which resist UV solarization even at relatively high optical powers. Using a process of hydrogen loading and UV irradiation of the fibers, we demonstrate stable single-mode

Tunable spin-spin interactions and entanglement of ions in separate controlled potential wells

August 7, 2014
Author(s)
Andrew C. Wilson, Yves Colombe, K. R. Brown, Emanuel H. Knill, Dietrich G. Leibfried, David J. Wineland
Inspired by the ideas of Richard Feynman,1 David Deutsch,2 Seth Lloyd3 and others, researchers in the field of quantum information processing and simulation seek to harness the quantum-mechanical properties of well-controlled laboratory systems to perform

Surface science for improved ion traps

October 1, 2013
Author(s)
David P. Pappas, Dustin A. Hite, Andrew C. Wilson, David T. Allcock, David J. Wineland, Dietrich G. Leibfried, Yves Colombe
Trapped ions are sensitive to electric-field noise from trap-electrode surfaces. This noise has been an obstacle to progress in trapped-ion quantum information processing (QIP) experiments for more than a decade. It causes motional heating of the ions, and

Micro-fabricated stylus ion trap

August 7, 2013
Author(s)
Kyle S. McKay, Christian L. Arrington, Ehren D. Baca, Jonathan J. Coleman, Yves Colombe, Patrick Finnegan, Dustin A. Hite, Andrew E. Hollowell, Robert Jordens, John D. Jost, Dietrich G. Leibfried, Adam M. Rowen, Ulrich J. Warring, David J. Wineland, David P. Pappas, Andrew C. Wilson
An electroformed, three-dimensional stylus Paul trap was designed to confine a single atomic ion for use as a sensor to probe the electric-field noise of proximate surfaces. The trap was microfabricated with the UV-LIGA technique to reduce the distance of

100-Fold Reduction of Electric-Field Noise in an Ion Trap Cleanded with In Situ Argon-Ion-Beam Bombardment

September 7, 2012
Author(s)
Dustin Hite, Yves Colombe, Andrew C. Wilson, Kenton R. Brown, Ulrich J. Warring, Robert Jordens, John D. Jost, David P. Pappas, Dietrich Leibfried, David J. Wineland, Kyle McKay
Anomalous heating of trapped atomic ions is a major obstacle to their use as quantum bits in scalable quantum computers. The physical origin of this electric field noise is not fully understood, but experimental evidence suggests that it emanates from the

A 750 mW, continuous-wave, solid-state laser source at 313 nm for cooling and manipulating trapped 9Be+ ions

October 28, 2011
Author(s)
Andrew C. Wilson, Christian Ospelkaus, Aaron Vandevender, J. A. Mlynek, Kenton R. Brown, Dietrich G. Leibfried, David J. Wineland
We present a solid-state laser system that generates 750 mW of continuous-wave, single frequency, output at 313 nm. Sum-frequency generation with fiber lasers at 1550 nm and 1051 nm produces up to 2 W at 626 nm. This visible light is then converted to UV

Single-qubit-gate error below 10 -4 in a trapped ion

September 14, 2011
Author(s)
Kenton R. Brown, Andrew C. Wilson, Yves Colombe, Christian Ospeklaus, Adam M. Meier, Emanuel H. Knill, Dietrich G. Leibfried, David J. Wineland
In theory, quantum computers can solve certain problems much more efficiently than classical computers [1]. This has motivated experimental efforts to construct and verify devices that manipulate quantum bits (qubits) in a variety of physical systems [2]

Coupled quantized mechanical oscillators

March 10, 2011
Author(s)
Kenton R. Brown, Christian Ospelkaus, Yves Colombe, Andrew C. Wilson, Dietrich G. Leibfried, David J. Wineland
The harmonic oscillator is one of the simplest physical systems but also one of the most fundamental. It is ubiquitous in nature, often serving as an approximation for a more complicated system or as a building block for larger models. Realizations of