Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications by: Andrew C. Wilson (Fed)

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 26 - 31 of 31

Surface science for improved ion traps

October 1, 2013
Author(s)
David P. Pappas, Dustin A. Hite, Andrew C. Wilson, David T. Allcock, David J. Wineland, Dietrich G. Leibfried, Yves Colombe
Trapped ions are sensitive to electric-field noise from trap-electrode surfaces. This noise has been an obstacle to progress in trapped-ion quantum information processing (QIP) experiments for more than a decade. It causes motional heating of the ions, and

Micro-fabricated stylus ion trap

August 7, 2013
Author(s)
Kyle S. McKay, Christian L. Arrington, Ehren D. Baca, Jonathan J. Coleman, Yves Colombe, Patrick Finnegan, Dustin A. Hite, Andrew E. Hollowell, Robert Jordens, John D. Jost, Dietrich G. Leibfried, Adam M. Rowen, Ulrich J. Warring, David J. Wineland, David P. Pappas, Andrew C. Wilson
An electroformed, three-dimensional stylus Paul trap was designed to confine a single atomic ion for use as a sensor to probe the electric-field noise of proximate surfaces. The trap was microfabricated with the UV-LIGA technique to reduce the distance of

100-Fold Reduction of Electric-Field Noise in an Ion Trap Cleanded with In Situ Argon-Ion-Beam Bombardment

September 7, 2012
Author(s)
Dustin Hite, Yves Colombe, Andrew C. Wilson, Kenton R. Brown, Ulrich J. Warring, Robert Jordens, John D. Jost, David P. Pappas, Dietrich Leibfried, David J. Wineland, Kyle McKay
Anomalous heating of trapped atomic ions is a major obstacle to their use as quantum bits in scalable quantum computers. The physical origin of this electric field noise is not fully understood, but experimental evidence suggests that it emanates from the

A 750 mW, continuous-wave, solid-state laser source at 313 nm for cooling and manipulating trapped 9Be+ ions

October 28, 2011
Author(s)
Andrew C. Wilson, Christian Ospelkaus, Aaron Vandevender, J. A. Mlynek, Kenton R. Brown, Dietrich G. Leibfried, David J. Wineland
We present a solid-state laser system that generates 750 mW of continuous-wave, single frequency, output at 313 nm. Sum-frequency generation with fiber lasers at 1550 nm and 1051 nm produces up to 2 W at 626 nm. This visible light is then converted to UV

Single-qubit-gate error below 10 -4 in a trapped ion

September 14, 2011
Author(s)
Kenton R. Brown, Andrew C. Wilson, Yves Colombe, Christian Ospeklaus, Adam M. Meier, Emanuel H. Knill, Dietrich G. Leibfried, David J. Wineland
In theory, quantum computers can solve certain problems much more efficiently than classical computers [1]. This has motivated experimental efforts to construct and verify devices that manipulate quantum bits (qubits) in a variety of physical systems [2]

Coupled quantized mechanical oscillators

March 10, 2011
Author(s)
Kenton R. Brown, Christian Ospelkaus, Yves Colombe, Andrew C. Wilson, Dietrich G. Leibfried, David J. Wineland
The harmonic oscillator is one of the simplest physical systems but also one of the most fundamental. It is ubiquitous in nature, often serving as an approximation for a more complicated system or as a building block for larger models. Realizations of