NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Single-Mode Optical Fiber For High-Power, Low-Loss UV Transmission
Published
Author(s)
Daniel H. Slichter, Yves Colombe, Andrew C. Wilson, Dietrich G. Leibfried, David J. Wineland
Abstract
We report large-mode-area solid-core photonic crystal fibers made from fused silica which resist UV solarization even at relatively high optical powers. Using a process of hydrogen loading and UV irradiation of the fibers, we demonstrate stable single-mode transmission for output powers of 10 mW at 280 nm and 125 mW at 313 nm (limited only by the available laser power) over hundreds of hours. Fiber attenuation ranges from 0.87 dB/m to 0.13 dB/m at these wavelengths, and is unaffected by bending for bend radii above 50 mm.
Slichter, D.
, Colombe, Y.
, Wilson, A.
, Leibfried, D.
and Wineland, D.
(2014),
Single-Mode Optical Fiber For High-Power, Low-Loss UV Transmission, Optics Express, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=916097
(Accessed October 11, 2025)