NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Coherent coupling and non-destructive measurement of trapped-ion mechanical oscillators
Published
Author(s)
Panyu Hou, Jenny Wu, Stephen Erickson, Daniel Cole, Giorgio Zarantonello, Adam Brandt, Andrew C. Wilson, Daniel Slichter, Dietrich Leibfried
Abstract
Precise quantum control and measurement of several harmonic oscillators, such as the modes of the electromagnetic field in a cavity or of mechanical motion, are key for their use as quantum platforms. The motional modes of trapped ions can be individually controlled and have good coherence properties. However, achieving high-fidelity two-mode operations and non-destructive measurements of the motional state has been challenging. Here we demonstrate the coherent exchange of single motional quanta between spectrally separated harmonic motional modes of a trapped-ion crystal. The timing, strength, and phase of the coupling are controlled through an oscillating electric potential with suitable spatial variation. Coupling rates that are much larger than decoherence rates enable demonstrations of high-fidelity quantum state transfer and beam-splitter operations, entanglement of motional modes, and Hong–Ou–Mandel-type interference. Additionally, we use the motional coupling to enable repeated non-destructive projective measurement of a trapped-ion motional state. Our work enhances the suitability of trapped-ion motion for continuous-variable quantum computing and error correction and may provide opportunities to improve the performance of motional cooling and motion-mediated entangling interactions.
Hou, P.
, Wu, J.
, Erickson, S.
, Cole, D.
, Zarantonello, G.
, Brandt, A.
, Wilson, A.
, Slichter, D.
and Leibfried, D.
(2024),
Coherent coupling and non-destructive measurement of trapped-ion mechanical oscillators, Nature Physics, [online], https://doi.org/10.1038/s41567-024-02585-y, https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=934566
(Accessed October 16, 2025)