Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Publications

Search Publications by David Olaya

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 1 - 18 of 18

Single-Flux-Quantum Multiplier Circuits for Synthesizing Gigahertz Waveforms With Quantum-Based Accuracy

February 3, 2021
Author(s)
Manuel C. Castellanos Beltran, David I. Olaya, Adam J. Sirois, Christine A. Donnelly, Paul Dresselhaus, Samuel Benz, Peter F. Hopkins
We designed, simulated, and experimentally demonstrated components for a microwave frequency digital-to-analog converter (DAC) based on rapid single flux quantum (RSFQ) circuits and a superconducting amplifier based on SQUID stacks. These are key

Planarized process for single-flux-quantum circuits with self-shunted Nb/NbxSi1-x/Nb Josephson junctions

February 18, 2019
Author(s)
David I. Olaya, Manuel C. Castellanos Beltran, Javier Pulecio, John P. Biesecker, Soroush Khadem, Theodore Lewitt, Peter F. Hopkins, Paul D. Dresselhaus, Samuel P. Benz
We describe the single-flux-quantum (SFQ) circuit fabrication process employed at NIST's Boulder Microfabrication Facility. The process includes four superconducting metal layers, one palladium-gold resistor layer, and a contact pad layer. Chemical

RF waveform synthesizers with quantum-based voltage accuracy for communications metrology

February 11, 2019
Author(s)
Peter F. Hopkins, Justus A. Brevik, Manuel C. Castellanos Beltran, Nathan E. Flowers-Jacobs, Anna E. Fox, David I. Olaya, Christine A. Donnelly, Paul D. Dresselhaus, Samuel P. Benz
We report on NIST’s development of Josephson junction-based programmable reference sources to synthesize quantum-accurate, spectrally-pure waveforms for characterizing and improving next generation communication devices and systems. The goal is to provide

Stacked Josephson Junctions as inductors for SFQ circuits

February 11, 2019
Author(s)
Manuel C. Castellanos Beltran, David I. Olaya, Adam J. Sirois, Paul D. Dresselhaus, Samuel P. Benz, Peter F. Hopkins
In order for Single Flux Quantum (SFQ) circuits to be scaled to densities needed for large-scale integration, typical lithographically-patterned circuit components should be made to be as compact as possible. In this work, we characterize the performance

Fabrication of High-Speed and High-Density Single-Flux-Quantum Circuits at NIST

June 12, 2017
Author(s)
David I. Olaya, Paul D. Dresselhaus, Peter F. Hopkins, Samuel P. Benz
The development of a fabrication process for single-flux-quantum (SFQ) digital circuits is a fundamental part of the NIST effort to develop a gigahertz waveform synthesizer with quantum voltage accuracy. This paper describes the current SFQ fabrication

Scalable, High-Speed, Digital Single-Flux-Quantum Circuits at NIST

June 12, 2017
Author(s)
Peter F. Hopkins, Manuel C. Castellanos Beltran, Christine A. Donnelly, Paul D. Dresselhaus, David I. Olaya, Adam J. Sirois, Samuel P. Benz
We describe NIST’s capabilities for designing and fabricating niobium-based single-flux quantum (SFQ) digital and mixed-signal circuits and show test results of our first circuits. We have assembled a package of software design tools that are readily

Design of the NIST 10V programmable Josephson voltage standard system

January 13, 2011
Author(s)
Charles J. Burroughs, Paul Dresselhaus, Alain Rufenacht, David I. Olaya, Mike Elsbury, Yi-hua D. Tang, Samuel Benz
NIST has developed and implemented a new Programmable Josephson Voltage Standard (PJVS) that operates at 10 V. This next-generation system is optimized for both dc metrology and stepwise-approximated ac voltage measurements for frequencies up to a few

10 Volt Programmable Josephson voltage standard circuits using NbSi-barrier junctions

October 28, 2010
Author(s)
Paul D. Dresselhaus, Mike Elsbury, David I. Olaya, Charles J. Burroughs, Samuel P. Benz
Programmable Josephson voltage standard (PJVS) circuits were developed that operate at 16 GHz to 20 GHz with operating margins larger than 1 mA. Two circuit designs were demonstrated each having a total of ~ 300,000 junctions, which were divided into

Development and investigation of intrinsically shunted junction series arrays for ac Josephson voltage standards

June 13, 2010
Author(s)
Johannes Kohlmann, Franz Mueller, Oliver F. kieler, D. Schleussner, B Egeling, Ralf Behr, David I. Olaya, Paul Dresselhaus, Samuel Benz
Different types of intrinsically shunted Josephson junctions have been developed and inves¬tigated for ac voltage standard applications at PTB. The first type for generation of voltages up to 10 V is driven by a 70 GHz sinusoidal microwave signal and

Digital Circuits Using Self-Shunted Nb/NbxSi1-x/Nb Josephson Junctions

May 27, 2010
Author(s)
David I. Olaya, Paul Dresselhaus, Samuel Benz, Anna Herr, Quentin Herr, alex Ioannidis, Donald Miller, Alan Kleinsasser
For the first time superconducting digital circuits based on novel Josephson junctions with amorphous niobium-silicon (a-NbSi) barriers were designed, fabricated and tested. Compared with the resistively shunted aluminum-oxide-barrier junctions that are

Niobium-silicide junction technology for superconducting digital electronics

April 1, 2010
Author(s)
David I. Olaya, Paul D. Dresselhaus, Samuel P. Benz
We present a technology based on Nb/NbxSi1-x/Nb junctions, with barriers near the metal-insulator transition, for applications in superconducting electronics (SCE) as an alternative to Nb/AlOx/Nb tunnel junctions. Josephson junctions with co-sputtered

Niobium-silicide Junction technology for superconducting digital electronics

June 15, 2009
Author(s)
David I. Olaya, Paul D. Dresselhaus, Samuel P. Benz
Digital superconducting electronics (SCE), which allows for very low power consumption and fast switching speeds, are a promising technology to deliver ultra-high performance computation. Currently, the preferred technology for junctions in SCE consists of

1V and 10V SNS Programmable Voltage Standards for 70 GHz

June 3, 2009
Author(s)
Franz Mueller, Ralf Behr, T. Weimann, Luis Palafox, David I. Olaya, Paul Dresselhaus, Samuel Benz
Programmable Josephson voltage standards (PJVSs) in combination with fast switchable DC current sources have opened up new applications in the field of low frequency AC metrology. The growing interest in output voltages of up to 10 V initiated efforts by

Amorphous Nb-Si Barrier Junctions for Voltage Standard and Digital Applications

June 3, 2009
Author(s)
David I. Olaya, Paul Dresselhaus, Samuel Benz, Jon E. Bjarnason, Erich N. Grossman
Amorphous Nb-Si has been previously demonstrated as a Josephson junction barrier material for Nb-based superconducting voltage standard circuits, including both dc programmable and ac Josephson voltage standards operating at frequencies up to 20 GHz. This

High-speed Nb/Nb-Si/Nb Josephson junctions for superconductive digital electronics

December 1, 2008
Author(s)
David I. Olaya, Burm Baek, Paul Dresselhaus, Samuel Benz
Josephson junctions with cosputtered amorphous Nb-Si barriers are being developed at NIST for use in voltage standard circuits. These junctions have the potential for a wide range of applications beyond voltage standards because their electrical properties

Design of a Turn-Key 10 V Programmable Josephson Voltage Standard System

June 13, 2008
Author(s)
Paul D. Dresselhaus, Mike Elsbury, Charles J. Burroughs, David I. Olaya, Samuel P. Benz, Norman F. Bergren, Robert E. Schwall, Zoya Popovic
NIST is designing a 10 V Programmable Josephson Voltage Standard (PJVS) system with an improved microwave design and arrays of stacked NbXSi1-x-barrier Josephson junctions. For this new design a ?ground-up? approach, was used which takes into account all