Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications by: Richard Mirin (Fed)

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 26 - 50 of 433

Demonstration that Einstein-Podolsky-Rosen Steering Requires More than One Bit of Faster-than-Light Information Transmission

May 28, 2021
Author(s)
Yu Xiang, Michael Mazurek, Joshua Bienfang, Michael Wayne, Carlos Abellan, Waldimar Amaya, Morgan Mitchell, Richard Mirin, Sae Woo Nam, Qiongyi He, Marty Stevens, Krister Shalm, Howard Wiseman
Schrödinger held that a local quantum system has some objectively real quantum state and no other (hidden) properties. He therefore took the Einstein-Podolsky-Rosen (EPR) phenomenon, which he generalized and called 'steering', to require nonlocal

Comparison of electrostatic and photon pressure force references at the nanonewton level

May 3, 2021
Author(s)
Gordon Shaw, John A. Kramar, Paul Williams, Matthew Spidell, Richard Mirin, Julian Stirling
This work describes a comparison between nanonewton force references derived from an electrostatic force balance and photon pressure force from calibrated laser optical power in the 1 watt range. The NIST Electrostatic Force Balance (EFB) is used to

Characterization of waveguide-integrated single-photon detectors using integratedphotonic structures

February 18, 2021
Author(s)
Sonia M. Buckley, Alexander N. Tait, Jeffrey T. Chiles, Adam N. McCaughan, Saeed Khan, Richard Mirin, Sae Woo Nam, Jeffrey M. Shainline
We show several techniques for using integrated-photonic waveguide structures to simultaneously characterize multiple waveguide-integrated superconducting-nanowire detectors with a single fiber input. We demonstrate structures for direct comparison of

Quantum dot lasers - history and future prospects

January 29, 2021
Author(s)
Richard Mirin, John E. Bowers, Justin Norman
We describe the initial efforts to use molecular beam epitaxy to grow InAs quantum dots on GaAs via the Stranski-Krastanow transition. We then discuss the initial efforts to use these quantum dots to demonstrate quantum dot lasers. We discuss the

Recent advances in superconducting nanowire single-photon detector technology for exoplanet transit spectroscopy in the mid-infrared

January 12, 2021
Author(s)
Varun Verma, Jeff Chiles, Adriana Lita, Richard Mirin, Sae Woo Nam, Yao Zhai, Adam McCaughan, Emma Wollman, Alexander Walter, Boris Korzh, Jason Allmaras, Ekkehart Schmidt, S. Frasca, Matthew Shaw
Superconducting nanowire single-photon detectors, or SNSPDs, have become the highest-performing class of single-photon detectors in the near-IR. At telecom wavelengths, SNSPDs have demonstrated detection effi- ciency above 95%, intrinsic dark count rates

State Readout of a Trapped Ion Qubit Using a Trap-integrated Superconducting Photon Detector

January 6, 2021
Author(s)
Susanna L. Todaro, Varun Verma, Katherine C. McCormick, David T. Allcock, Richard Mirin, David J. Wineland, Sae Woo Nam, Andrew C. Wilson, Dietrich Leibfried, Daniel Slichter
We detect fluorescence photons emitted by a single $^9$Be$^+$ ion confined in a surface- electrode rf ion trap, using a superconducting nanowire single photon detector integrated directly into the trap. We achieve a qubit readout fidelity of 99.91(1) %

Microresonator enhanced, waveguide coupled emission from silicon defect centers for superconducting optoelectronic networks

July 10, 2020
Author(s)
Alexander N. Tait, Sonia M. Buckley, Jeffrey M. Shainline, Adam N. McCaughan, Jeffrey T. Chiles, Sae Woo Nam, Richard P. Mirin
Superconducting optoelectronic networks could achieve scales unmatched in hardware-based neuromorphic computing. After summarizing recent progress in this area, we report new results in cryogenic silicon photonic light sources, components central to these

Microring resonator-coupled photoluminescence from silicon W centers

July 10, 2020
Author(s)
Alexander N. Tait, Sonia M. Buckley, Jeffrey T. Chiles, Adam N. McCaughan, Sae Woo Nam, Richard P. Mirin, Jeffrey M. Shainline
Defect centers are promising candidates for waveguide-integrated silicon light sources. We demonstrate microresonator- and waveguide-coupled photoluminescence from silicon W centers. Observations indicate that wavelengths that are on-resonance with

Superconducting microwire detectors with single-photon sensitivity in the near-infrared

June 16, 2020
Author(s)
Jeffrey T. Chiles, Sonia M. Buckley, Adriana E. Lita, Varun B. Verma, Jeffrey M. Shainline, Richard P. Mirin, Sae Woo Nam, Jason Allmaras, Boris Korzh, Emma Wollman, Matthew Shaw
We report on the fabrication and characterization of single-photon-sensitive WSi superconducting detectors with wire widths from 1 υm to 3 υm. The devices achieve saturated internal detection efficiency at 1.55 υm wavelength and exhibit maximum count rates

Optimization of photoluminescence from W centers in silicon-on-insulator for waveguide-coupled sources

May 13, 2020
Author(s)
Sonia M. Buckley, Alexander N. Tait, Galan Moody, Kevin L. Silverman, Sae Woo Nam, Richard P. Mirin, Jeffrey M. Shainline, Stephen Olson, Joshua Hermann, Satyvalu Papa Rao
W centers are trigonal defects generated by self-ion implantation in silicon that exhibit photoluminescence at 1.218\textmu m. We have shown previously that they can be used in waveguide-integrated all-silicon light-emitting diode sources. Here we optimize

Low-loss, high-bandwidth fiber-to-chip coupling using capped adiabatic tapered fibers

May 1, 2020
Author(s)
Saeed Khan, Jeff Shainline, Richard Mirin, Sae Woo Nam, Sonia Buckley, Jeff Chiles
We demonstrate adiabatically tapered fibers terminating in sub-micron tips that are clad with a higher-index material for coupling to an on-chip waveguide. This cladding enables coupling to a high-index waveguide without losing light to the buried oxide. A