Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications by: Kartik Srinivasan (Fed)

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 76 - 100 of 145

Photonic chip for laser stabilization to an atomic vapor at a precision of $10^{-11}$

April 11, 2018
Author(s)
Matthew T. Hummon, Songbai Kang, Douglas G. Bopp, Qing Li, Daron A. Westly, Sangsik Kim, Connor D. Fredrick, Scott A. Diddams, Kartik A. Srinivasan, John E. Kitching
We perform precision spectroscopy of rubidium confined in a micro-machined, 27~mm$^3$ volume, vapor cell using a collimated free space 120~$\bm{\mu}$m diameter laser beam derived directly from a single mode silicon nitride waveguide. With this optical

Quasi-Phase-Matched Supercontinuum Generation in Photonic Waveguides

February 1, 2018
Author(s)
Daniel D. Hickstein, Grace Kerber, David R. Carlson, Lin Chang, Daron A. Westly, Kartik A. Srinivasan, Abijith S. Kowligy, John Bowers, Scott A. Diddams, Scott B. Papp
Supercontinuum generation in on-chip waveguides is a versatile source of broadband light and the generated spectrum is determined by the phase-matching conditions. Here we show that quasi- phase-matching via periodic modulations of the waveguide structure

Heterogeneous integration for on-chip quantum photonic circuits with single quantum dot devices

October 12, 2017
Author(s)
Marcelo I. Davanco, Liu Jin, Luca Sapienza, Chen-Zhao Zhang, Jose Vinicius De Miranda Cardoso, Varun B. Verma, Richard P. Mirin, Sae Woo Nam, Liu Liu, Kartik A. Srinivasan
Photonic integration is establishing itself as an enabling technology for photonic quantum science, offering considerably greater scalability, stability, and functionality than traditional bulk optics. Here, we develop a scalable, heterogeneous III-V /

Quantum Light Turned on by Nanotube Chemistry

September 1, 2017
Author(s)
Ming Zheng, Kartik A. Srinivasan
Room-temperature single-photon emission at telecom wavelengths is realized by organic color centers chemically implanted on chirality-defined single-wall carbon nanotubes.

Photonic-Chip Supercontinuum with Tailored Spectra for Counting Optical Frequencies

July 24, 2017
Author(s)
David R. Carlson, Daniel D. Hickstein, Alexander J. Lind, Judith B. Olson, Richard W. Fox, Roger C. Brown, Andrew D. Ludlow, Qing Li, Daron A. Westly, Tara M. Fortier, Kartik A. Srinivasan, Scott A. Diddams, Scott B. Papp
Supercontinuum generation using chip-integrated photonic waveguides is a powerful approach for spectrally broadening pulsed laser sources with very low pulse energies and compact form factors. When pumped with a mode-locked laser frequency comb, these

Ultrabroadband Supercontinuum Generation and Frequency-Comb Stabilization Using On-Chip Waveguides with Both Cubic and Quadratic Nonlinearities

July 24, 2017
Author(s)
Daniel D. Hickstein, Hojoong Jung, David R. Carlson, Alexander J. Lind, Ian R. Coddington, Kartik A. Srinivasan, Gabriel G. Ycas, Daniel C. Cole, Abijith S. Kowligy, Stefan Droste, Erin S. Lamb, Nathan R. Newbury, Hong X. Tang, Scott A. Diddams, Scott B. Papp
Using aluminum-nitride photonic-chip waveguides, we generate optical frequency comb supercontinuum spanning 500~nm to 4000~nm, and show that the spectrum can be widely tailored by changing the geometry of the waveguide. Since aluminum nitride exhibits both

Optomechanical Quantum Correlations at Room Temperature

June 23, 2017
Author(s)
Thomas P. Purdy, Karen E. Grutter, Kartik A. Srinivasan, Jacob M. Taylor
By shining laser light through a nanomechanical beam, we measure the beam’s thermally driven vibrations and perturb its motion with optical forces at a level dictated by the Heisenberg measurement-disturbance uncertainty relation. Such quantum effects are

Self-referenced frequency combs using high-efficiency silicon nitride waveguides

June 12, 2017
Author(s)
David R. Carlson, Daniel D. Hickstein, Alexander J. Lind, Stefan Droste, Daron A. Westly, Nima Nader, Ian R. Coddington, Nathan R. Newbury, Kartik A. Srinivasan, Scott A. Diddams, Scott B. Papp
We utilize silicon nitride waveguides to self-reference telecom-wavelength fiber frequency combs through supercontinuum generation using less than 15 mW total optical average power. This is approximately ten times lower than conventional approaches using

Optomechanical Quantum Correlations

May 18, 2017
Author(s)
Thomas P. Purdy, Karen E. Grutter, Kartik A. Srinivasan, Nikolai N. Klimov, Zeeshan Ahmed, Jacob M. Taylor
We present methods to measure optical quantum correlations arising from an optomechanical interaction even when large classical noise sources are present. We demonstrate quantum- backaction-noise-calibrated Brownian motion thermometry as a metrological

Cascaded emission of single photons from the biexciton in monolayered WSe2

November 10, 2016
Author(s)
Yu-Ming He, Oliver Iff, Nils Lundt, Vasilij Baumann, Marcelo I. Davanco, Kartik Srinivasan, Sven Hofling, Christian Schneider
Monolayers of transition metal dichalcogenide materials emerged as a new material class to study excitonic effects in solid state. They benefit from the enormous coulomb correlations between electrons and holes, as a result of reduced dielectric screening

Nanolithography Toolbox

October 19, 2016
Author(s)

Bojan R. Ilic, Krishna Coimbatore Balram, Daron A. Westly, Marcelo I. Davanco, Karen E. Grutter, Qing Li, Thomas Michels, Christopher H. Ray, Liya Yu, Neal A. Bertrand, Samuel M. Stavis, Vladimir A. Aksyuk, James A. Liddle, Brian A. Bryce, Nicolae Lobontiu, Yuxiang Liu, Meredith Metzler, Gerald Lopez, David Czaplewski, Leonidas Ocola, Pavel Neuzil, Vojtech Svatos, Slava Krylov, Christopher B. Wallin, Ian J. Gilbert, Kristen A. Dill, Richard J. Kasica, Kartik A. Srinivasan, Gregory Simelgor, Juraj Topolancik

The Nanolithography Toolbox

October 19, 2016
Author(s)
Krishna Coimbatore Balram, Daron Westly, Marcelo I. Davanco, Karen E. Grutter, Qing Li, Thomas Michels, Christopher H. Ray, Richard Kasica, Christopher B. Wallin, Ian J. Gilbert, Brian A. Bryce, Gregory Simelgor, Juraj Topolancik, Nicolae Lobontiu, Yuxiang Liu, Pavel Neuzil, Vojtech Svatos, Kristen A. Dill, Neal A. Bertrand, Meredith Metzler, Gerald Lopez, David Czaplewski, Leonidas Ocola, Kartik Srinivasan, Samuel Stavis, Vladimir Aksyuk, James Alexander Liddle, Slava Krylov, Robert Ilic
This article describes a platform-independent software package for scripted lithography pattern layout generation and complex processing. The Nanolithography Toolbox, developed at the Center for Nanoscale Science and Technology (CNST) at the National

Quantum Electromechanics on Silicon Nitride Nanomembranes

August 3, 2016
Author(s)
Johannes Fink, Mahmoud Kalaee, Alessandro Pitanti, Richard Norte, Lukas Heinzle, Marcelo I. Davanco, Kartik Srinivasan, Oskar Painter
We present a platform based upon silicon nitride nanomembranes for integrating superconducting microwave circuits with planar acoustic and optical devices such as phononic and photonic crystals. Utilizing tensile stress and lithographic patterning of a

Thermometry with Optomechanical Cavities

June 6, 2016
Author(s)
Thomas P. Purdy, Karen E. Grutter, Kartik Srinivasan, Nikolai Klimov, Zeeshan Ahmed, Jacob Taylor
Thermally-driven motion of a nanomechanical resonator may be employed as an absolute thermometer. We experimentally measure radiation pressure shot noise induced quantum correlations to absolutely calibrate the motional signal transduced onto an optical

Imaging Nanophotonic Modes of Microresonators using a Focused Ion Beam

January 15, 2016
Author(s)
Kevin A. Twedt, Jie J. Zou, Marcelo I. Davanco, Kartik A. Srinivasan, Jabez J. McClelland, Vladimir A. Aksyuk
Optical microresonators have proven powerful in a wide range of applications, including cavity quantum electrodynamics, biosensing, microfludics, and cavity optomechanics. Their performance depends critically on the exact distribution of optical energy