Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications by: Eric Whitenton (Ctr)

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 26 - 50 of 86

Dynamic Properties for Modeling and Simulation of Machining: Effect of Pearlite to Austenite Phase Transition on Flow Stress in AISI 1075 Steel

January 3, 2011
Author(s)
Timothy J. Burns, Steven P. Mates, Richard L. Rhorer, Eric P. Whitenton, Debasis Basak
The Pulse-Heated Kolsky Bar Laboratory at the National Institute of Standards and Technology (NIST) has been developed for the measurement of dynamic properties of metals. Because high-speed machining processes can lead to extremely rapid heating of a

Effect on Flow Stress of a Rapid Phase Transition in AISI 1045 Steel

July 13, 2010
Author(s)
Timothy J. Burns, Steven P. Mates, Richard L. Rhorer, Eric P. Whitenton, Debasis Basak
New experimental data on AISI 1045 steel from the NIST pulse-heated Kolsky Bar Laboratory are presented. The material is shown to exhibit a nonequilibrium phase transformation at high strain rate. An interesting feature of these data is that the material

Modeling of the Temperature Field in the Chip and in the Tool in High-speed Machining of a Carbon Steel: Effect of Pearlite to Austenite Phase Transition in AISI 1075

April 7, 2010
Author(s)
Timothy J. Burns, Steven P. Mates, Richard L. Rhorer, Eric P. Whitenton, Debasis Basak, Russell H. McFadden
A one-dimensional transient finite-difference model for the temperature distribution in orthogonal metal cutting, which was originally developed by Boothroyd, and then improved upon by Tlusty, is used to calculate the temperature field in the chip and in

An electrical pulse-heated Kosky bar technique for high strain rate flow stress measurements of rapidly heated metals

September 13, 2009
Author(s)
Steven P. Mates, Stephen W. Banovic, Richard L. Rhorer, Timothy J. Burns, Eric P. Whitenton, D Basak
We have developed a unique electrical pulse-heated Kolsky Bar technique for measuring the flow stress of metals at heating rates of up to 6000 °C per second and strain rates up to 10^4 per second. Under these conditions, which are approaching those found

Machining Process Measurements: A Titanium Machining Example

June 4, 2009
Author(s)
Richard L. Rhorer, Eric P. Whitenton, Timothy J. Burns, Steven P. Mates, Jarred C. Heigel, April L. Cooke, Johannes A. Soons, Robert W. Ivester
NOTE: This is a two-page abstract for publication in the CD-ROM conference proceedings only. Oral presentation of the complete paper will be presented at the conference (SEM, June 1-4, 2009, Albuquerque). This paper discusses recent results of studying Ti

Measurement and Characterization of Dynamics in Machining Chip Segmentation

September 16, 2008
Author(s)
Eric P. Whitenton, Jarred C. Heigel, Robert W. Ivester
Comparing measured chip formation characteristics to those predicted by machining models is an important technique for testing the validity of those models. These characteristics include whether a chip is continuous or segmented, as well as the frequency

High Rate Tensile Strength Measurements of Frangible Bullets Using a Kolsky Bar

June 8, 2008
Author(s)
Steven P. Mates, Richard L. Rhorer, Stephen W. Banovic, Eric P. Whitenton, Richard J. Fields
The tensile strength of frangible bullets is measured by a high rate diametral compression test (DCT) performed with a Kolsky Bar. Frangible bullets, meant to disintegrate on impact by brittle failure, also exhibit significant plasticity in compression. As

A Novel Peak Detection Algorithm for Use in the Study of Machining Chip Segmentation

November 7, 2007
Author(s)
Eric P. Whitenton, Robert W. Ivester, Jarred C. Heigel
The study of how metal deforms and flows as parts are machined yields important insights into the metal cutting process. Improvements in high-speed digital imaging and image processing software promise to improve our understanding of the tool-workpiece

Recent Results from the NIST Pulse-Heated Kolsky Bar

September 3, 2007
Author(s)
Timothy J. Burns, Steven Mates, Richard L. Rhorer, Eric P. Whitenton, Debasis Basak
A Kolsky bar laboratory for measuring dynamic material properties, in support of improved finite-element modeling of high-speed machining processes, has been developed at the National Institute of Standards and Technology (NIST). The NIST split-Hopkinson

Tensile Strength Measurements of Frangible Bullets Using the Diametral Compression Test

May 8, 2007
Author(s)
Steven P. Mates, Richard L. Rhorer, Stephen W. Banovic, Eric P. Whitenton, Richard J. Fields
Frangible bullets are designed to disintegrate on impact against rigid surfaces to avoid ricochet hazards in recreational shooting ranges or law enforcement training facilities. Their behavior against protective soft body armor is therefore quite different

NIST Standard Bullets and Casings Project

January 1, 2007
Author(s)
Jun-Feng Song, Theodore V. Vorburger, Susan M. Ballou, Thomas Brian Renegar, Li Ma, Eric P. Whitenton, David R. Kelley, Robert A. Clary, A Zheng, M Ols
The National INstitute of Standards and Technology (NIST) standard bullets and casings project will provide support to firearm examiners and to the National Integrated Ballistics Information Network (NIBIN) in the United States. The standard bullet is

High Rate Tensile Strength Measurements of Frangible Bullets Using a Kolsky Bar

January 1, 2006
Author(s)
S P. Mates, Richard L. Rhorer, S Banovic, Eric P. Whitenton, Richard J. Fields
The tensile strength of frangible bullets is measured by a high rate diametral compression test (DCT) performed with a Kolsky Bar. Frangible bullets, meant to disintegrate on impact by brittle failure, also exhibit significant plasticity in compression. As