Skip to main content

NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.

Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.

U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications

NIST Authors in Bold

Displaying 451 - 475 of 913

Optomechanical Raman-Ratio Thermometry

September 9, 2015
Author(s)
Katarina Cicak, Thomas P. Purdy, Pen Li Yu, Nir Kampel, Bob Peterson, Raymond Simmonds, Cindy Regal
The temperature dependence of the asymmetry between Stokes and anti-Stokes Raman scattering can be exploited for self-calibrating, optically-based thermometry. In the context of cavity optomechanics, we observe the cavity-enhanced scattering of light

Comparing the Linewidths from Single-Pass SPDC and Singly-Resonant Cavity SPDC

September 3, 2015
Author(s)
Oliver T. Slattery, Lijun Ma, Paulina S. Kuo, Xiao Tang
Spontaneous parametric down-conversion (SPDC) is a common method to generate entangled photon pairs for use in quantum communications. The generated single photon linewidth is a critical issue for photon-atom interactions in quantum memory applications. We

iNEMI Project on Automotive Electronic Material Challenges

September 3, 2015
Author(s)
Yaw S. Obeng
Automobiles are incorporating more and more electronics from various industry sectors that have not been optimally designed for use inside the vehicle passenger compartment. Reliability and cost are two key considerations when incorporating traditional

EIT Quantum Memory with Cs Atomic Vapor for Quantum Communication

September 1, 2015
Author(s)
Lijun Ma, Oliver T. Slattery, Paulina S. Kuo, Xiao Tang
Quantum memory is a key device in the implementation of quantum repeaters for quantum communications and quantum networks. We demonstrated a quantum memory based on electromagnetically-induced transparency (EIT) in a warm cesium atomic cell. The quantum

Voltage Metrology Using a Quantum AC Standard

September 1, 2015
Author(s)
Thomas E. Lipe, Joseph R. Kinard Jr., Yi-hua Tang, Samuel P. Benz, Charles J. Burroughs, Paul D. Dresselhaus
We report on the use of a quantum-based AC voltage standard for ac-dc difference metrology at the National Institute of Standards and Technology (NIST). The paper describes the characterization of the output transmission line, and the methods used to

Overwhelming thermomechanical motion with microwave radiation pressure shot noise

August 21, 2015
Author(s)
John D. Teufel, Florent Q. Lecocq, Raymond W. Simmonds
We measure the fundamental noise processes associated with a continuous linear position measurement of a micromechanical membrane incorporated in a microwave cavity optomechanical circuit. We observe the trade-o ff between the two fundamental sources of

Frequency-tunable Superconducting Resonators via Nonlinear Kinetic Inductance

August 13, 2015
Author(s)
Michael Vissers, Johannes Hubmayr, Jiansong Gao, Martin Sandberg, Saptarshi Chaudhuri, Clint Bockstiegel
We have designed, fabricated and tested a frequency-tunable high-Q superconducting resonator made from niobium titanium nitride film. The frequency tunability is achieved by injecting a DC current through a special current-directing circuit into the

Advanced ACTPol Multichroic Polarimeter Array Fabrication Process for 150 mm Wafers

July 22, 2015
Author(s)
Shannon M. Duff, Gene C. Hilton, Johannes Hubmayr, James A. Beall, Jason E. Austermann, Daniel T. Becker, Jeffrey L. Van Lanen
Advanced ACTPol is a third generation cosmic microwave background (CMB) receiver, deploying in 2016 on the Atacama Cosmology Telescope (ACT) in the Atacama desert of Chile. Spanning five frequency bands from 25 – 280 GHz and having a total of nearly 5800

Thermal Conductance Engineering for High-Speed TES Microcalorimeters

July 22, 2015
Author(s)
James P. Hays-Wehle, Daniel R. Schmidt, Joel N. Ullom, Daniel S. Swetz
Many current and future applications for superconducting transition-edge sensor (TESmicrocalorimeters require significantly faster pulse-response than is currently available. X-ray spectroscopy experiments at next-generation synchrotron light sources need

Statistically background-free, phase-preserving parametric up-conversion with faint light

July 9, 2015
Author(s)
Yu-Hsiang Cheng, Tim O. Thomay, Glenn S. Solomon, Alan L. Migdall, Sergey Polyakov
We demonstrate phase preservation in a frequency up-conversion process at the single-photon level. This phase preservation enables the applications of frequency conversion of entangled photon pairs. Periodically poled lithium niobate waveguides and a 1550

Quantum-correlated photon pairs generated in commercial 45 nm complementary metal-oxide semiconductor microelectronics

July 7, 2015
Author(s)
Cale M. Gentry, Jeff Shainline, Mark W. Wade, Martin Stevens, Shellee D. Dyer, Xiaoge Zeng, Fabio Pavanello, Thomas Gerrits, Sae Woo Nam, Richard Mirin, Milos A. Popovic
Correlated photon pairs are a fundamental component of quantum photonic systems. While pair sources have previously been integrated on silicon chips in custom facilities, these often take advantage of only a small fraction of microelectronics fabrication

Single-Photon Detector Calibration

July 7, 2015
Author(s)
Sergey V. Polyakov
In this chapter we introduce the set of detector properties, common to most contemporary detectors, that should be determined for a complete characterization. Then we introduce methods for detector characterization, and finally we present practical recipes

High-dimensional hyperentanglement of mode-locked two-photon states

June 29, 2015
Author(s)
Zhenda Xie, Tian Zhong, Sajan Shrestha, XinAn Xu, Junlin Liang, Yan-Xiao Gong, Alessandro Restelli, Jeffrey Shapiro, Franco N. Wong, Chee Wei Wong, Joshua Bienfang
Quantum entanglement is the fundamental resource for quantum information processing and communications, including secure data rates with higher capacities and better error resilience [1-9]. In dense-coded quantum communication channels, it is desirable to

Resolving the vacuum fluctuations of an optomechanical system using an artificial atom

June 15, 2015
Author(s)
Florent Q. Lecocq, John D. Teufel, Jose A. Aumentado, Raymond W. Simmonds
Heisenberg's uncertainty principle results in one of the strangest quantum behaviours: a mechanical oscillator can never truly be at rest. Even at a temperature of absolute zero, its position and momentum are still subject to quantum fluctuations. However

Tunable Spin Qubit Coupling Mediated by a Multi-Electron Quantum Dot

June 4, 2015
Author(s)
Vanita Srinivasa, Haitan Xu, Jacob M. Taylor
We present an approach for entangling electron spin qubits localized on spatially separated impurity atoms or quantum dots via a multi-electron, two-level quantum dot. The effective exchange interaction mediated by the dot can be understood as the simplest

Superconducting Transition Edge Sensors for Quantum Optics

June 2, 2015
Author(s)
Thomas Gerrits, Adriana E. Lita, Brice R. Calkins
High efficiency single-photon detectors allow novel measurements in quantum information processing and quantum photonic systems. The photon-number resolving transition edge sensor (TES) is known for its near-unity detection efficiency and has been used in

A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout

May 14, 2015
Author(s)
Michael S. Allman, Varun B. Verma, Martin J. Stevens, Thomas Gerrits, Robert D. Horansky, Adriana E. Lita, Francesco Marsili, A. Beyer, Matthew Shaw, D. Kumor, Richard P. Mirin, Sae Woo Nam
We demonstrate a 64-pixel free-space-coupled array of superconducting nanowire single photon detectors optimized for high detection efficiency in the near-infrared range. An integrated, readily scalable, multiplexed readout scheme is employed to reduce the

Phonon Assisted Gain in a Semiconductor Quantum Dot Maser

May 13, 2015
Author(s)
Michael Gullans, Yinyiu Liu, George Stehlik, Jason Petta, Jacob M. Taylor
We develop a microscopic model for the recently demonstrated double quantum dot (DQD) maser. In characterizing the gain of this device we find that, in addition to the direct stimulated emission of photons, there is a large contribution from transitions

High-resolution X-ray emission spectroscopy with transition-edge sensors: present performance and future potential

May 1, 2015
Author(s)
W.Bertrand (Randy) Doriese, Joseph Fowler, Daniel Swetz, Cherno Jaye, Daniel A. Fischer, Carl D. Reintsema, Douglas Bennett, Leila R. Vale, Gene C. Hilton, Dan Schmidt, Joel Ullom, Jens Uhlig, Ujjwal Mandal, Galen O'Neil, Luis Miaja Avila, Young I. Joe, wilfrid fullagar, Fredrick P. Gustafsson, Dharma Kurunthu, Villy Sundstrom
X-ray emission spectroscopy (XES) is a powerful element-selective tool to analyze the oxidation states of atoms in complex compounds, determine their electronic configuration, and identify unknown compounds in challenging environments. Until now the low
Displaying 451 - 475 of 913
Was this page helpful?