An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Runbing Li, Chengjie Zhu, Lu Deng, Edward W. Hagley
We demonstrate a fast, all-optical polarization gate in a room-temperature atomic medium. Using a Polarization-Selective-Kerr-Phase-Shift (PSKPS) technique, we selectively write a p phase shift to one circularly-polarized component of a linearly-polarized
The most important drawback to code-based cryptography has historically been its large key sizes. Recently, several promising approaches have been proposed to reduce keysizes. In particular, significant keysize reduction has been achieved by using
Corey A. Stambaugh, Haitan Xu, Utku Kemiktarak, Jacob M. Taylor, John R. Lawall
We demonstrate a ``membrane-in-the-middle'' optomechanical system using a silicon nitride membrane patterned as a subwavelength grating. The grating has a reflectivity of over 99.8%, effectively creating two sub-cavities, with free spectral ranges of 6 GHz
Varun B. Verma, Boris Korzh, Felix Bussieres, Robert D. Horansky, Adriana E. Lita, Francesco Marsili, Hugo Zbinden, Richard P. Mirin, Sae Woo Nam
We demonstrate that superconducting nanowire single photon detectors (SNSPDs) fabricated from amorphous WSi may be operated with > 75 % system detection efficiency at a temperature approaching seventy percent of the superconducting transition temperature
Michael Gullans, Kristin M. Beck, Qian Lin, M D. Lukin, Vladan Vuletic, Wenlan Chen
The realization of deterministic photon-photon interactions is a long-standing goal in optical science. Using an atomic ensemble inside a cavity, we demonstrate the mutual cross modulation of two continuous light beams at the level of individual photons
Zachary H. Levine, Boris L. Glebov, Alan L. Migdall, Thomas Gerrits, Brice R. Calkins, Adriana E. Lita, Sae Woo Nam
As part of an effort to extend fundamental single-photon measurements into the macroscopic regime, we explore how best to assign photon-number uncertainties to output waveforms of a superconducting Transition Edge Sensor (TES) and how those assignments
Yanhua (. Zhai, Francisco E. Becerra Chavez, Jingyun Fan, Alan L. Migdall
We examine the spatial correlation of thermal-light diffracted through a double-slit using photon-number-resolved detection to directly measure high-order correlations. We observe sinusoidal modulations of the spatial coherence in the diffracted light
Jacob M. Taylor, Jack Hansom, Carsten Schulte, Claire Le Gall, Clemens Matthiesen, Edmund Clarke, Maxime Hugues, Mete Atature
Semiconductor quantum dots (QDs) offer an efficient and scalable interface between single spins and optical photons. However, the solid-state environment of the QD represents an inherent source of noise, generally considered detrimental to coherent control
Recent work has shown that quantum computers can in polynomial time compute scattering probabilities in massive quantum field theories. One can translate this task into a corresponding formal problem in computational complexity theory. Here, we establish
Stephane Solve, Regis Chayramy, Alain Rufenacht, Charles J. Burroughs, Samuel Benz
The Programmable Josephson Voltage Standard (PJVS) leakage resistance to ground (LRG) is defined as the electrical resistance of one side of the measurement leads to ground. Under certain measurement conditions, this resistance can produce a significant
We present a photonic-assisted time-domain measurement technique for exploring millimeter-wave propagation through a W-band waveguide. The electric fields, guided inside a rectangular waveguide, are sampled using a sub-millimeter-scale electro-optic probe
Alessio Pollarolo, Weston L. Tew, Horst Rogalla, Samuel P. Benz
In the Johnson Noise Thermometry approach, Boltzmanns constant k is obtained as the ratio of the noise power measured across a sense resistor at the triple point of water and the noise power measured for a synthesized reference waveform. The reference
One-time memories (OTM's) are simple, tamper-resistant cryptographic devices, which can be used to implement sophisticated functionalities such as one-time programs. OTM's cannot exist in a fully-classical world, or in a fully-quantum world, but there is
Sunil Mittal, Jingyun Fan, Sanli Faez, Alan L. Migdall, Jacob M. Taylor, Mohammad Hafezi
Electronic transport through a disordered medium leads generically to localization, where conductance drops exponentially with system size, even at zero temperature. The addition of gauge fields to disordered media leads to fundamental changes in transport
We demonstrate a scheme to engineer the three-body interaction in circuit-QED systems by tuning a fluxonium qubit. Connecting such qubits in a square lattice and controlling the tunneling dynamics, in the form of a synthesized magnetic field, for the
We study the cavity-based parametric downconversion (PDC) process as a source of photon Fock states using Monte Carlo simulation with realistic experimental settings. By controlling the circulation of one PDC daughter field in the cavity conditioned upon
Michael A. Wayne, Joshua C. Bienfang, Allessandro Restelli, P. G. Kwiat
Reducing afterpulsing in single-photon avalanche diodes (SPADs) allows operation with shorter recovery times and higher detection rates. Afterpulsing in SPADs can be reduced by reducing the total avalanche charge. We use a periodic quenching system to
With dispersion engineering and optimization of pump wavelength, four-wave mixing within a microstructured fiber can be used to produce high-purity entangled photons for applications in quantum information processing tasks.
Kevin J. Dwyer, Joshua M. Pomeroy, David S. Simons, June W. Lau, Kristen L. Steffens
Using a laboratory-scale apparatus, we enrich 28Si and produce material with 40 times less residual 29Si than previously reported. Starting from natural abundance silane gas, we offer an alternative to industrial gas centrifuges for providing materials
Measurement and computation are fundamental tools in science. However, many of our ordinary intuitions break down when we study microscopic, quantum-mechanical objects. For instance, measurements of quantum systems are limited by uncertainty principles
Joshua A. Gordon, Christopher L. Holloway, Andrew Schwarzkopf, Dave Anderson, Stephanie Miller, Nithiwadee Thaicharoen, Georg Raithel
In this paper we demonstrate the detection of millimeter waves via Autler-Townes splitting in 85Rb Rydberg atoms. This method may provide an independent atomic-based SI-traceable method for measuring mm-wave electric fi elds, which addresses a gap in
Y.-Y. Liu, Karl Petersson, J. Stehlik, Jacob Taylor, Jason Petta
We study a voltage biased InAs double quantum dot (DQD) that is coupled to a superconducting transmission line resonator. Inelastic tunneling in the DQD is mediated by electron phonon coupling and coupling to the cavity mode. We show that electronic
Varun B. Verma, Adriana E. Lita, Michael R. Vissers, Francesco Marsili, David P. Pappas, Richard P. Mirin, Sae Woo Nam
We present the characteristics of superconducting nanowire single photon detectors (SNSPDs) fabricated from amorphous Mo0.75Ge0.25 thin -films. Fabricated devices show a saturation of the internal detection efficiency at temperatures below 1 K, with system
Dale J. Fixsen, Harvey Moseley, Thomas Gerrits, Adriana Lita, Sae Woo Nam
Design of TES microcalorimeters requires a tradeoff between resolution and dynamic range. Often, experimenters will require linearity for the highest energy signals, which requires additional heat capacity be added to the detector. This results in a