NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
BQP-completeness of Scattering in Scalar Quantum Field Theory
Published
Author(s)
Stephen P. Jordan, Keith S. Lee, John Preskill
Abstract
Recent work has shown that quantum computers can in polynomial time compute scattering probabilities in massive quantum field theories. One can translate this task into a corresponding formal problem in computational complexity theory. Here, we establish that this is a BQP-hard problem. In other words, by solving it, one can solve any problem that can be solved in polynomial time by a quantum computer. Hence, these scattering probabilities cannot be obtained by any classical polynomial-time algorithm unless BQP=BPP. Our construction works by encoding a quantum circuit into a spacetime-varying source term in the quantum field theorys Lagrangian.
Jordan, S.
, Lee, K.
and Preskill, J.
(2014),
BQP-completeness of Scattering in Scalar Quantum Field Theory, Quantum Information & Computation
(Accessed October 14, 2025)