Skip to main content

NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.

Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.

U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Optimal Energy Measurement in Nonlinear Systems - An Application of Differential Geometry

Published

Author(s)

Dale J. Fixsen, Harvey Moseley, Thomas Gerrits, Adriana Lita, Sae Woo Nam

Abstract

Design of TES microcalorimeters requires a tradeoff between resolution and dynamic range. Often, experimenters will require linearity for the highest energy signals, which requires additional heat capacity be added to the detector. This results in a reduction of low energy resolution in the detector. We derive and demonstrate an algorithm that allows operation far into the nonlinear regime with little loss in spectral resolution. We use a least squares optimal filter that varies with photon energy to accommodate the nonlinearity of the detector and the non-stationarity of the noise. The fitting process we use can be seen as an application of differential geometry. This recognition provides a set of well-developed tools to extend our work to more complex situations. The proper calibration of a nonlinear microcalorimeter requires a source with densely spaced narrow lines. A pulsed laser multi-photon source is used here, and is seen to be a powerful tool for allowing us to develop practical systems with significant detector nonlinearity. The combination of our analysis techniques and the multi-photon laser source create a powerful tool for increasing the performance of future TES microcalorimeters.
Citation
Journal of Low Temperature Physics
Volume
176
Issue
1-2

Keywords

transition edge sensor, single photon counting, optimal filter, non-stationary noise

Citation

Fixsen, D. , Moseley, H. , Gerrits, T. , Lita, A. and Nam, S. (2014), Optimal Energy Measurement in Nonlinear Systems - An Application of Differential Geometry, Journal of Low Temperature Physics, [online], https://doi.org/10.1007/s10909-014-1149-x, https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=915678 (Accessed October 10, 2025)

Issues

If you have any questions about this publication or are having problems accessing it, please contact [email protected].

Created June 30, 2014, Updated October 12, 2021
Was this page helpful?