An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Multidimensional coherent spectroscopy measures the third-order polarization response of a system to reveal microscopic electronic and many-body phenomena. Applied to semiconductor nanostructures, it can distinguish homogeneous and inhomogeneous broadening
Yilin Wang, Wenqi Zhu, Cheng Zhang, Qingbin Fan, Lu Chen, Henri Lezec, Amit Agrawal, Ting Xu
With rapid development towards shrinking the size of traditional photonic systems such as cameras, spectrometers, displays and illumination systems, there is an urgent need for high performance and ultra-compact functional optical elements. The large
Qiang Sun, Evert Klaseboer, Alex Yuffa, Derek Y. Chan
An efficient field-only nonsingular surface integral method to solve Maxwell's equations for the components of the electric field on the surface of a dielectric scatterer is introduced. In this method, both the vector wave equation and the divergence-free
We develop and demonstrate a source of polarization-entangled photon pairs using spontaneous parametric down-conversion (SPDC) in domain-engineered, periodically poled lithium niobate (PPLN) at telecom wavelengths. Pumped at 775 nm, this domain-engineered
It was recently demonstrated theoretically, when the polarimetric properties of a material depend only upon the direction transverse to that of propagation (long coherence length regime), depolarization in transmission evolves quadratically with material
Thomas Gerrits, Adriana Lita, Sae Woo Nam, Jan Sperling, David Phillips, Jacob Bulmer, G Thekkadath, A. Eckstein, T Wolterink, J Lugani, Wolfgang Vogel, G.S. Agarwal, Christine Silberhorn, Ian Walmsley
The representation of quantum states via phase-space functions constitutes an intuitive technique to characterize light. However, the reconstruction of such distributions is challenging as it demands specific types of detectors and detailed models thereof
Daniel Woodbury, Robert Schwartz, Ela Rockafellow, Jared Wahlstrand, H M. Milchberg
Multiphoton and tunneling ionization are fundamental processes in strong field laser-matter interactions, and are integral to applications such as high harmonic generation, filamentation, and laser plasma production. However, measurements of ionization
Thomas Gerrits, Alan L. Migdall, Joshua C. Bienfang, John H. Lehman, Sae Woo Nam, Jolene D. Splett, Igor Vayshenker, Chih-Ming Wang
We measure the detection efficiency of single-photon detectors at wavelengths near 851 nm and 1533.6 nm. We investigate the spatial uniformity of one free-space-coupled single-photon avalanche diode and present a comparison between fusion-spliced and
Xiyuan Lu, Gregory Moille, Anshuman Singh, Qing Li, Daron Westly, Ashutosh Rao, Su P. Yu, Travis Briles, Scott Papp, Kartik Srinivasan
The on-chip creation of coherent light at visible wavelengths is of interest to many applications in spectroscopy, sensing, and metrology. Towards that goal, here we propose and demonstrate the first on-chip visible-telecom optical parameteric oscillator
Direct digital synthesis in concert with an electro-optic phase modulator was employed to generate optical frequency combs with tooth spacings as low as 100 Hz. These combs were utilized to probe electromagnetically induced transparency (EIT) and hyperfine
Eric J. Stanton, Jeff Chiles, Nima Nader, Kartik Srinivasan, Scott Papp, Sae Woo Nam, Richard Mirin, Lin Chang, Weiqiang Xie, Aditya Malik, Jon Peters, John Bowers, Gabriele Navickaite, Davide Sacchetto, Michael Zervas
Catherine C. Cooksey, Daniel Poitras, Li Li, Michael Jacobson
For the Seventh Manufacturing Problem contest, participants were asked to fabricate on a provided N-BK7 substrate a challenging filter with specific s-polarization transmittance spectra at angles of incidence of 10° and 50°, covering a wavelength range
Ian B. Spielman, Ana Valdes Curiel, Dimitris Trypogeorgos, Erin Marshall, Nathan Lundblad
We demonstrate partial-transfer absorption imaging as a technique for repeatedly imaging an ultracold atomic ensemble with minimal perturbation. We prepare an atomic cloud in a state that is dark to the imaging light and then use a microwave pulse to