NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Ultra-compact visible light depolarizer based on dielectric metasurface
Published
Author(s)
Yilin Wang, Wenqi Zhu, Cheng Zhang, Qingbin Fan, Lu Chen, Henri Lezec, Amit Agrawal, Ting Xu
Abstract
With rapid development towards shrinking the size of traditional photonic systems such as cameras, spectrometers, displays and illumination systems, there is an urgent need for high performance and ultra-compact functional optical elements. The large footprint of traditional bulky optical elements, their monofunctional response and the inability for direct integration into nanophotonic devices have severely limited progress in this area. Metasurfaces, consisting of an array of subwavelength nanoscatterers with spatially varying geometries, have shown remarkable performance as ultrathin multifunctional optical elements. Here, based on an all- dielectric metasurface, we propose and experimentally demonstrate a spatial domain optical depolarizer capable of efficiently depolarizing linearly polarized light in the visible spectral band from 450 nm to 670 nm, with a degree of polarization of less than 10 %. Remarkably, it is capable of depolarizing light beam with a diameter down to several micrometers, about two orders of magnitude smaller than commercial liquid crystal depolarizers. Furthermore, the long response time, bulky footprint, tight optical alignment tolerance and large pixel size severely limit the performance and system integration of commercial depolarizers. We envision the metasurface depolarizer to find applications in next generation ultra-compact grating spectrometers and illumination systems.
Wang, Y.
, Zhu, W.
, Zhang, C.
, Fan, Q.
, Chen, L.
, Lezec, H.
, Agrawal, A.
and Xu, T.
(2020),
Ultra-compact visible light depolarizer based on dielectric metasurface, Applied Physics Letters, [online], https://doi.org/10.1063/1.5133006, https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=929093
(Accessed October 9, 2025)