Skip to main content
U.S. flag

An official website of the United States government

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.


Secure .gov websites use HTTPS
A lock ( ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Field-Only Surface Integral Equations: Scattering from a Dielectric Body



Qiang Sun, Evert Klaseboer, Alexey J. Yuffa, Derek Y. Chan


An efficient field-only nonsingular surface integral method to solve Maxwell's equations for the components of the electric field on the surface of a dielectric scatterer is introduced. In this method, both the vector wave equation and the divergence-free constraint are satisfied inside and outside the scatterer. The divergence-free condition is replaced by an equivalent boundary condition that relates the normal derivatives of the electric field across the surface of the scatterer. Also, the continuity and jump conditions on the electric and magnetic fields are expressed in terms of the electric field across the surface of the scatterer. Together with these boundary conditions, the scalar Helmholtz equation for the components of the electric field inside and outside the scatterer is solved by a fully desingularized surface integral method. Comparing with the most popular surface integral methods based on the Stratton--Chu formulation or the PMCHWT formulation, our method is conceptually simpler and numerically straightforward because there is no need to introduce intermediate quantities such as surface currents and the use of complicated vector basis functions can be avoided altogether. Also, our method is not affected by numerical issues such as the zero frequency catastrophe and does not contain integrals with (strong) singularities. To illustrate the robustness and versatility of our method, we show examples in the Rayleigh, Mie, and geometrical optics scattering regimes. Given the symmetry between the electric field and the magnetic field, our theoretical framework can also be used to solve for the magnetic field.
Journal of the Optical Society of America A


surface integral equations, scattering, wave propagation
Created February 1, 2020, Updated March 26, 2020