An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Organic-inorganic halide CH 3NH 3PbI 3 solar cells have attracted enormous attention in recent years due to their remarkable power conversion efficiency. These materials should exhibit interesting spin-dependent properties as well, owing to the strong spin
John S. Villarrubia, Vipin N. Tondare, Andras Vladar
The combination of SEM for high spatial resolution, images from multiple angles to provide 3D information, and commercially available stereo photogrammetry software for 3D reconstruction offers promise for dimensional metrology in 3D. A method is described
Engineering of the optical resonances in plasmonic resonators arrays is achieved by virtue of the intrinsic properties to the constituent structures such as composition, size and shape and by controlling the inter-resonator interactions by virtue the array
John S. Villarrubia, Andras Vladar, Bin Ming, Regis J. Kline, Daniel F. Sunday, Jasmeet Chawla, Scott List
The width and shape of 10 nm to 12 nm wide lithographically patterned SiO2 lines were measured in the scanning electron microscope by fitting the measured intensity vs. position to a physics-based model in which the lines widths and shapes are parameters
John S. Villarrubia, Andras Vladar, Michael T. Postek
The ability to model the effect of fields due to charges trapped in insulators with floating conductors has been added to JMONSEL (Java Monte Carlo simulator for Secondary Electrons) and applied to a simple photomask metal on glass geometry. These
Leite Marina, maxim abashin, Henri Lezec, anthony gianfrancesco, Alec Talin, Nikolai Zhitenev
The local collection characteristics of grain interiors and grain boundaries in thin film CdTe polycrystalline solar cells are investigated using scanning photocurrent microscopy. The carriers are locally generated by light injected through a small
Yasufumi Araki, Guru S. Khalsa, Allan H. MacDonald
Disorder scattering and spin-orbit coupling are together responsible for the diffusion and relaxation of spin-density in time-reversal invariant systems. We study spin-relaxation and diffusion in a two-dimensional electron gas with Rashba spin-orbit
Uwe Arp, Alexander Sorokin, Ulf Jastrow, Pavle Jurani?, Svea Kreis, Mathias Richter, Yiping Feng, Dennis Nordlund, Kai Tiedtke, Philip Heimann, Bob Nagler, Hae Ja Lee, Stephanie Mack, Marco Cammarata, Oleg Krupin, Marc Messerschmidt, Michael Holmes , Michael Rowen, William Schlotter, Stefan Moeller, Joshua Turner
This paper reports novel measurements of x-ray optical radiation on an absolute scale from a recently developed source of radiation generated in the soft x-ray regime of a free electron laser. We give a brief description of the physics behind the
We study the effect of electron and phonon interface scattering on the thermoelectric properties of disordered, polycrystalline materials (with grain sizes larger than electron and phonons' mean free path). Interface scattering of electrons is treated with
It is shown that the current-induced torques between a ferromagnetic layer and an antiferromagnetic layer with a compensated interface vanish when the ferromagnet is aligned with an axis of spin-rotation symmetry of the antiferromagnet. For properly chosen
Kyung-Jin Lee, H.-W. Lee, Aurelien Manchon, Mark D. Stiles, Paul M. Haney
In bilayer systems consisting of an ultrathin ferromagnetic layer adjacent to a metal with strong spin-orbit coupling, an applied in-plane current induces torques on the magnetization. The torques that arise from spin-orbit coupling are of particular
Randolph E. Elmquist, Fan-Hung Liu, Chang-Shun Hsu, Chiashain Chuang, Tak-Pong Woo, Lung-I Huang Huang, Chi-Te Laing, Yasuhiro Fukuyama, Yanfei Yang
We have performed magnetotransport measurements on multi-layer epitaxial graphene. By increasing the driving current I through our graphene devices while keeping the bath temperature fixed, we are able to study Dirac fermion heating and current scaling in
William H. Butler, William Rippard, Stephen E. Russek, Ranko R. Heindl
We model "soft" error rates for writing (WSER) and for reading (RSER) for spin-torque memory devices that have a free layer with easy axis perpendicular to the film plane by solving the Fokker-Planck equation for the probability distribution of the angle
We study the surface states of Bi2Se3 close to the topologically protected crossing point. Close to charge neutrality, local fluctuations in carrier density result in electron and hole puddles that dominate the electronic properties of these materials. By
Randolph E. Elmquist, Mariano A. Real, Irene G. Calizo, Brian G. Bush, Tian T. Shen, Nikolai N. Klimov, David B. Newell, Angela R. Hight Walker, Randall M. Feenstra
This paper describes concepts and measurement techniques necessary for characterization of graphene in the development of graphene-based quantized Hall effect (QHE) devices and resistance standards. We briefly contrast the properties of graphene produced
Galen C. O'Neil, Peter J. Lowell, Joel N. Ullom, Jason M. Underwood
In a refrigerator, heat is moved from one system to another and this movement requires an additional dissipated power. It is desirable to both isolate the cooled system, so that its temperature may differ from the bath, and to heatsink the heated system so
In this chapter, we study the electronic structure of arbitrarily stacked multilayer graphene in the absence or presence of magnetic field. Energy band structure and Landau level spectrum are obtained using a pi-orbital continuum model with nearest
Youngman Jang, Samuel R. Bowden, Mark Mascaro, John Unguris, Caroline Ross
360˚, 540˚ and other complex transverse domain walls have been created in narrow Co wires connected to injection pads by cycling a magnetic field perpendicular to the wire length. The composite walls, formed by impingement of 180˚ transverse walls of
Randolph E. Elmquist, Felipe Hernandez-Marquez, Mariano Real, Tian T. Shen, David B. Newell, Colin J. Jacob, George R. Jones
The development of large-area graphene has direct application to electrical standards including the quantized Hall resistance because of unique characteristics not found in conventional devices. These include symmetrical conduction by electrons and holes
Shaffique Adam, Suyong S. Jung, Nikolai N. Klimov, Nikolai B. Zhitenev, Joseph A. Stroscio, Mark D. Stiles
Close to charge neutrality, graphene's energy landscape is highly inhomogeneous, forming a sea of electron-like and hole-like puddles that determine the properties of graphene at low carrier density. However, the details of puddle formation have remained
We consider models of organic bulk heterojunction photovoltaics with spatially varying compo- sition of donor/acceptor materials. We find analytic expressions for the current-voltage relation in simplifed cases for two blend geometries, and find the effect
Randolph E. Elmquist, David B. Newell, George R. Jones, Felipe L. Marquez-Hernandez, Mariano A. Real, Tian T. Shen
Many material and electronic contributions must be favorable to produce devices with strong quantum Hall effect (QHE) plateaus that are suitable for precise resistance metrology. Even so, metrologically interesting QHE plateaus have been observed in
Shaffique Adam, Sankar Das Sarma, Euyheon Hwang, Enrico Rossi
We provide a broad review of fundamental electronic properties of two-dimensional graphene with the emphasis on density and temperature dependent carrier transport in doped or gated graphene structures. A salient feature of our review is a critical
Hongki Min, Parakh Jain, Shaffique Adam, Mark D. Stiles
We calculate the conductivity of arbitrarily stacked multilayer graphene sheets within a relaxation time approximation by considering both short-range and long-range impurities. We investigate theoretically the feasibility of identifying the stacking order
Hongki Min, Shaffique Adam, Young J. Song, Joseph A. Stroscio, Mark D. Stiles, Allan H. MacDonald
The carrier density distributions in few-layer-graphene systems grown on the carbon face of silicon carbide can be radically altered by the presence of a Scanning Tunneling Microscope (STM) tip used to probe top-layer electronic properties, and by a