NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
In this chapter, we study the electronic structure of arbitrarily stacked multilayer graphene in the absence or presence of magnetic field. Energy band structure and Landau level spectrum are obtained using a pi-orbital continuum model with nearest-neighbor intralayer and interlayer tunneling terms. Using degenerate state perturbation theory, we analyze the low-energy effective theory and show that the low-energy electronic structure of arbitrarily stacked graphene multilayers consists of chiral pseudospin doublets with a conserved chirality sum. We discuss its implications in Quantum Hall effect, optical conductivity, transport conductivity and pseudospin magnetism.
Citation
Graphene Nanoelectronics: Metrology, Synthesis, Properties and Applications