NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Jingjie Cheng, Zhaoliang Peng, Penghui Song, Bo Peng, Jason J. Gorman, Justin Kuo, Amit Lal, Wenming Zhang, Lei Shao
In this work, we employed our newly developed optical imaging method to probe detailed acoustodynamic physics in gigahertz (GHz) unreleased ultrasonic transducers based on an AlN-on-silicon system, revealing mode superposition, anisotropic transduction
Benjamin Reschovsky, David Long, Feng Zhou, Yiliang Bao, Richard A. Allen, Jason J. Gorman, Thomas W. LeBrun
We demonstrate a microfabricated optomechanical accelerometer that is capable of percent-level accuracy without external calibration. To achieve this capability, we use a mechanical model of the device behavior that can be characterized by the thermal
Mike McNulty, Dazhen Gu, Dan Kuester, Payam Nayeri
This paper discusses methodology for characterizing linearity summary parameters of software-defined radio receivers. First, we introduce a highly automated testbed for 1-dB compression point (P1dB) and third-order input intercept point (IIP3). With this
Edward Garboczi, Sumitra Dey, Ahmed Hassan, Deb Chatterjee
Modeling the electromagnetic response of Carbon Nanotube (CNT) reinforced composites is inherently a three dimensional (3D) multi-scale problem that is challenging to solve in real-time for nondestructive evaluation applications. This article presents a
Maximilian Protte, Varun Verma, Jan Philipp Hopker, Richard Mirin, Sae Woo Nam, Tim Bartley
In this paper, we demonstrate our results on micron-wide tungsten silicide superconducting nanowire single-photon detectors fabricated by laser lithography. Laser-lithographically written devices allow for fast and easy structuring of large areas while
Aurore F. Quelennec, Jason Gorman, Darwin Reyes-Hernandez
Electroacoustic technologies, which employ acoustic waves to manipulate and detect bioparticles, have been increasingly used, with a great deal of success, in life sciences. Particle manipulation or measurement capabilities of surface acoustic wave-based
Causality is a basic concept in system theory. In this paper we introduce the notions of causal and non-causal indoor localization. A non-causal localization system uses future signal and sensor measurements, in addition to past and present ones, to
Potorti et. al. wrote a paper [1] that was dubbed as the first critical reading of the international standard ISO/IEC 18305 [2], Test and evaluation of localization and tracking systems. The author of this paper served as the Editor of ISO/IEC 18305. As
We present the differences in cell migration patterns of endothelial cells when they physically interact with cancer cells through a porous membrane barrier (1.2 µm pore size). Cells were dielectrophoretically trapped on opposite sides of an 11 µm thick
Varun Verma, Adriana Lita, Yao Zhai, Heli C. Vora, Richard Mirin, Sae Woo Nam, Boris Korzh, Alex Walter, Ryan Briggs, Marco Colangelo, Emma Wollman, Andrew Beyer, Jason Allmaras, D. Zhu, Ekkehart Schmidt, A. G. Kozorezov, Matthew Shaw
We developed superconducting nanowire single-photon detectors (SNSPDs) based on tungsten silicide (WSi) that show saturated internal detection efficiency up to a wavelength of 10 um. These detectors are promising for applications in the mid-infrared
Microcalorimeter x-ray detectors employing a transition-edge sensor are capable of very high energy resolution, but this depends on an understanding of the readout process. The combination of thermal cooling and thermoelectric feedback present in most
Paul Szypryt, Douglas Bennett, William J. Boone, Amber L. Dagel, G Dalton, William Doriese, Malcolm Durkin, Joseph Fowler, Edward Garboczi, Jonathon D. Gard, Gene Hilton, Jozsef Imrek, E S. Jimenez, Vincent Y. Kotsubo, K Larson, Zachary H. Levine, John Mates, D McArthur, Kelsey Morgan, Nathan J. Nakamura, Galen O'Neil, Nathan Ortiz, Christine G. Pappas, Carl Reintsema, Dan Schmidt, Daniel Swetz, K R. Thompson, Joel Ullom, C Walker, Joel C. Weber, Abigail Wessels, J W. Wheeler
Feature sizes in integrated circuits have decreased substantially over time, and it has become increasingly difficult to three-dimensionally image these complex circuits after fabrication. This can be important for process development, defect analysis, and
Varun Verma, Richard Mirin, Sae Woo Nam, Jan P. Hoepker, Maximilian Protte, Raimund Ricken, Victor Quiring, Christof Eigner, Christine Silberhorn, Tim J. Bartley
We demonstrate the integration of amorphous tungsten silicide superconducting nanowire single- photon detectors on titanium in-diffused lithium niobate waveguides. We show proof-of-principle detection of evanescently-coupled photons of wavelength 1550nm
Advances in integrated photonics open exciting opportunities for batch-fabricated optical nano- electro-mechanical sensors with ultra-high sensitivities and bandwidths enabled by cavity optomechanics. However, heat from the amplified optical intensity
Abigail Wessels, Kelsey Morgan, Daniel Becker, Johnathon Gard, Gene C. Hilton, John Mates, Carl Reintsema, Daniel Schmidt, Daniel Swetz, Joel Ullom, Leila Vale, Douglas Bennett
Transition-Edge Sensors (TESs) are two-dimensional superconducting films used to detect energy or power. These detectors are voltage biased in the superconducting transition where the film resistance is both finite and a strong function of temperature
Synthetic piezoelectric crystals with the structure of langasite (LGS) are being pursued for resonant acoustic sensors that can operate at temperatures exceeding the range of conventional piezoelectric materials. The optimization of these crystals is
Jay H. Hendricks, Zeeshan Ahmed, Daniel Barker, Stephen Eckel, James A. Fedchak, Nikolai Klimov, Julia Scherschligt
At the core of the NIST on a Chip (NoAC) program is the idea that measurement technology can be developed to enable metrology to be done "outside the National Metrology Institute" by virtue of deployed and often miniaturized standards (that can also serve
Dan Kuester, Yao Ma, Dazhen Gu, Adam Wunderlich, Jason Coder, Joseph R. Mruk
We summarize a few key spectrum sensing measurement challenges and recent advances. Laboratory tests of sensing are complicated by their inseparable and often imbedded role in modern hardware. Results are difficult to calibrate because physical parameters
Son T. Le, Seulki Cho, Curt A. Richter, Arvind Balijepalli
Field-effect transistors (FETs) are a powerful tool for sensitive measurements of numerous biomarkers (e.g., proteins, nucleic acids, antigen, etc.) and gaseous species. However, most research in the field has focused on building discrete devices with high
A. D. Tollefson, C. M. Smith, M. H. Carpenter, M. P. Croce, M. E. Fassbender, K. D. John, K. E. Koehler, L. M. Lilley, E. M. O'Brien, Daniel Schmidt, B. W. Stein, Joel Ullom, M. D. Yoho, D. J. Mercer
225Ac is a valuable medical isotope for targeted alpha therapy, but 227Ac is an undesirable byproduct of an accelerator-based synthesis method under investigation. Sufficient detector sensitivity is critical for quantifying the trace impurity of 227Ac
Lorenz Keck, Gordon A. Shaw, Renee Theska, Stephan Schlamminger
To accommodate the need for increased portability and accuracy in laser power measurement instrumentation above 100 Watt at the National Institute of Standards and Technology (NIST), a new instrument is required. This instrument is intended to create a new
Ramya Vishnubhotla, Sarah Robinson, Jon R. Askim, Christopher B. Montgomery, Kristen L. Steffens, Herman O. Sintim, Stephen Semancik
Conformational changes of single-stranded DNA (ssDNA) play an important role in a DNA strand's ability to bind to target ligands. A variety of factors can influence conformation, including temperature, ionic strength, pH, buffer cation valency, strand
Joseph Fowler, Galen O'Neil, Bradley K. Alpert, Douglas Bennett, Edward V. Denison, William Doriese, Gene Hilton, Lawrence T. Hudson, Young I. Joe, Kelsey Morgan, Daniel Schmidt, Daniel Swetz, Csilla I. Szabo-Foster, Joel Ullom
We use an array of transition-edge sensors, cryogenic microcalorimeters with 4 eV energy resolution, to measure the x-ray emission-line profiles of four elements of the lanthanide series: praseodymium, neodymium, terbium, and holmium. The spectrometer also
Papa K. Amoah, Pengtao Lin, Helmut Baumgart, Yaw S. Obeng, Rhonda R. Franklin
Metal-oxide semiconductor gas sensors based on chemical resistivity necessarily involve making electrical contacts to the sensing materials. These contacts are imperfect and introduce errors into the measurements. In this paper, we demonstrate the