NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Ioannis Karageorgos, Elyssia S. Gallagher, Connor Galvin, David Travis Gallagher, Jeffrey W. Hudgens
Monoclonal antibody (mAb) pharmaceuticals are the fastest-growing class of therapeutics with a wide range of clinical applications. To assure their safety, these protein drugs must demonstrate highly consistent purity and stability. Key to these objectives
Pengfei Niu, Brian J. Nablo, Kiran Bhadriraju, Darwin Reyes-Hernandez
Here we describe the exact processes occurring between two metallic electrodes when measuring volumetric flow rate by electrical impedance in polydimethylsiloxane (PDMS) microchannel. A considerable fraction of the change in impedance, due to change of
Gurdaman Khaira, Manolis Doxastakis, Alec Bowen, Jiaxing Ren, Hyo S. Suh, Tamar Segal-Peretz, Xuanxuan Chen, Chun Zhou, Adam F. Hannon, Nicola Ferrier, Daniel Sunday, Roel Gronheid, Regis J. Kline, Paul Nealey, Juan J. DePablo
Vipin N. Tondare, John S. Villarrubia, Andras Vladar
Three-dimensional (3D) reconstruction of a sample surface from scanning electron microscope (SEM) images taken at two perspectives has been known for decades. However, this method has not been widely used in the semiconductor industry for 3D measurements
The Coulter particle counting method has been in use for more than five decades. It records a change in resistance when a particle flows from a large reservoir through a narrow orifice to another reservoir, where the flow direction is aligned with an
Christopher E. Sunday, Papa Amoah, Karl Montgomery, Yaw S. Obeng
In this paper, we discuss the use of broadband microwaves (MW) to characterize the thermal stability of organic and hybrid silicon-organic thin films meant for insulation applications in micro- and nanoelectronic devices. We take ad-vantage of MW
William A. Osborn, Lawrence H. Friedman, Mark D. Vaudin
We present a new methodology to accurately measure strain magnitudes from 3D nanodevices using Electron Backscatter Diffraction (EBSD). Because the dimensions of features on these devices are smaller than the interaction volume for backscattered electrons
Christina A. Hacker, Robert C. Bruce, Sujitra J. Pookpanratana
Innovation in the electronics industry is tied to interface engineering as devices increasingly incorporate new materials and shrink. Molecular layers offer a versatile means of tuning interfacial electronic, chemical, physical, and magnetic properties
Albert Davydov, Terrance P. O'Regan, Andrew A. Herzing, Dimitry Ruzmetov, Robert A. Burke, Kehao Zhang, A. Glen Birdwell, DeCarlos Taylor, E Byrd, Joshua A. Robinson, Tony G. Ivanov, M R. Neupane, S D. Walck
Integrating two-dimensional (2D) and three-dimensional (3D) semiconductors to realize vertical heterojunctions with novel electronic and optoelectronic properties is gaining interest from the device community. In this study, we utilize an approach that
Sarkar Anwar, William Vandenberghe, Gennadi Bersuker, Dmitry Veksler, Giovanni Verzellesi, Rohit Galatage, Creighton Buie, Adam Barton, Eric Vogel, Christopher Hinkle
Capacitance-voltage (C-V) measurement and analysis is highly useful for determining important information about metal-oxide-semiconductor (MOS) gate stacks. Parameters such as the equivalent oxide thickness (EOT), substrate doping density, flatband voltage
Sarkar Anwar, William Vandenberghe, Gennadi Bersuker, Dmitry Veksler, Giovanni Verzellesi, Creighton Buie, Eric Vogel, Christopher Hinkle
High-mobility alternative channel materials to silicon are critical to the continued scaling of metal-oxidesemiconductor (MOS) devices. The analysis of capacitancevoltage (C-V) measurements on these new materials with highk gate dielectrics is a critical
Kamal Choudhary, Irina Kalish, Ryan Beams, Francesca M. Tavazza
In this work, we introduce a simple criterion to identify two-dimensional (2D) materials based on the comparison between experimental lattice constant and lattice constant mainly obtained from Materials-Project (MP) density functional theory (DFT)
Berc Kalanyan, William A. Kimes, Ryan Beams, Stephan J. Stranick, Elias J. Garratt, Irina Kalish, Albert Davydov, Ravindra Kanjolia, James E. Maslar
High volume manufacturing of devices based on transition metal dichalcogenide (TMD) ultra-thin films will require deposition techniques that are capable of reproducible wafer-scale growth with monolayer control. To date, TMD growth efforts have largely
The goal of this work is to systematically demonstrate the effectiveness of one-dimensional phononic crystal (1-D PnC) tethers as a means to significantly reduce tether loss in micromechanical resonators to a point where the total energy loss is dominated
Joseph A. Hagmann, Xiqiao Wang, Pradeep N. Namboodiri, Jonathan E. Wyrick, Roy E. Murray, Michael D. Stewart, Richard M. Silver, Curt A. Richter
The key building block for devices based on the deterministic placement of dopants in silicon is the formation of phosphorus dopant monolayers and the overgrowth of high quality crystalline Si. Lithographically defined dopant delta-layers can be formed
James B. Marro, Chukwudi A. Okoro, Yaw S. Obeng, Kathleen C. Richardson
Organic additives are typically used in the pulse electrodeposition of copper (Cu) to prevent void formation during the filling of high aspect ratio features. In this work, the role of bath chemistry as modified by organic additives was investigated for
Bryan Barnes, Hui Zhou, Mark-Alexander Henn, Martin Sohn, Richard M. Silver
The sizes of non-negligible defects in the patterning of a semiconductor device continue to decrease as the dimensions for these devices are reduced. These "killer defects" disrupt the performance of the device and must be adequately controlled during
Christopher E. Sunday, Dmitry Veksler, Kin P. Cheung, Yaw S. Obeng
Traditional metrology has been unable to adequately address the needs of emerging integrated circuits at the nano scale; thus, new metrology and techniques are needed. For example, the reliability challenges, and their root causes, in TSV enabled 3D-IC
Kai Hao, Lixiang Xu, Wu Fengcheng, Philip Nagler, Kha Tran, Xin Ma, Tobias Korn, Allan H. MacDonald, Xiaoqin Li, Galan Moody
The emerging field of valleytronics aims to exploit the valley pseudospin of electrons residing near Bloch band extrema as an information carrier. Recent experiments demonstrating optical generation and manipulation of exciton valley coherence (the
Ernest G. Kessler Jr., Csilla Szabo-Foster, James Cline, Albert Henins, Lawrence T. Hudson, Marcus Mendenhall, Mark D. Vaudin
Precision lattice spacing comparison measurements at the National Institute of Standards and Technology (NIST) provide traceability of x-ray wavelength and powder diffraction standards to the international system of units (SI). Here we both summarize and
Emily G. Bittle, Hyun W. Ro, Chad R. Snyder, Sebastian Engmann, Regis J. Kline, Oana Jurchescu, Dean M. DeLongchamp, David J. Gundlach
Polymer semiconductors are contenders for use in printed, flexible electronics. Though organic electronic materials have been studied for many years, the physics of charge transport is still under investigation. This is in part due to the large variability
Quentin Smets, Jihong Kim, Jason Campbell, David M. Nminibapiel, Dmitry Veksler, Pragya Shrestha, Rahul Pandey, Anne S. Verhulst, Eddy Simoens, David J. Gundlach, Curt A. Richter, Kin P. Cheung, Suman Suman, Anda Mocuta, Nadine Collaert, Aaron Thean, Marc Heyns
Most experimental reports of tunneling field-effect transistors show defect-related performance degradation. Charging of oxide traps causes Fermi level pinning, and Shockley-Read-Hall (SRH)/trap-assisted tunneling (TAT) generation cause unwanted leakage