Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Projects/Programs

Topic Area
Displaying 276 - 300 of 469

Metrologies for Nanobiomaterials in Artificial Photosynthesis

Completed
A transition to solar fuel will require high-efficiency catalysts that make use of domestic fuel feedstocks with minimal additional energy input. In the past several years, novel water oxidation catalysts from abundant elements have been reported. Catalysts deposited onto a photoactive substrate

Metrology of Dim Light Sources

Ongoing
“What is the lowest amount of light that this instrument can detect?” is an important yet unmet measurement challenge. Evaluating the detection performance of complicated imaging instruments is crucial to quantifying substances of interest and the ability to compare results across instruments

Metrology for Emerging Integrated Systems

Ongoing
The Emerging Integrated Systems Metrology program supports measurements for advanced manufacturing and secure nano-manufacturing, novel devices and electronic materials. Specifically, the program aims to develop the metrology required to enable a quantitative assessment and physical understanding of

Metrology for extreme ultraviolet lithography

Ongoing
Patterning with light 13 nm brings a host a new challenges Light at 13 nm is well within the vacuum ultraviolet, where radiation is strongly absorbed by all materials. This requires that the technology take place in vacuum and rely on mirrors rather than lenses. Moreover generating sufficient

Metrology of the Ohm

Ongoing
The Metrology of the Ohm Project has been a leader in providing internationally consistent resistance standards that are readily available to support the scientific and industrial foundations of the U.S. economy. Through this very broad customer base, the activities of the project enable cost

Metrology for Printing and Graphic Arts Substrates

Ongoing
Paper is a complex, heterogeneous, multi-phased material. While there is a significant body of work related to the dielectric properties of cellulose, comparatively fewer studies have been done on printing and writing grades of paper. In our previous work, we have been able to differentiate between

Metrology of Purity and Contaminants in Solid Materials

Ongoing
Purity evaluations of high-purity bulk materials used in chips manufacturing are calibrated against reference materials that are often not matrix-matched to the materials under test. In other words, differences in the compositions of the calibrants and the samples being analyzed can result in large

Micro- and Nanoelectromechanical Systems

Completed
MEMS/NEMS are enabling technologies that bring new functionalities with the potential to radically transform markets ranging from consumer products to national defense. The meteoric rise of the smartphone is an excellent example, in which MEMS accelerometers, gyroscopes, microphones, displays, and

Micro- and nano-optomechanical systems

Ongoing
Our primary current research direction involves the use of fabricated devices with sub-wavelength periodicity (photonic crystals) as optomechanical elements. Such structures enable a rich variety of devices, including mirrors, polarizers, and filters, in a configuration that couples naturally to

Microcalorimeter Spectrometers for X-ray and Gamma-ray Spectroscopy

Ongoing
The Quantum Calorimeters Project in the Quantum Sensors Group develops and applies sensors that detect the energy of single photons or particles. For example, Transition-Edge Sensors (TESs) are able to measure the energy of single x-ray and gamma-ray photons with a precision better than one part per

Microfabricated Atomic Sensors

Ongoing
Our program aims to develop sensors that can simultaneously achieve high absolute scalar accuracy and vector magnetic field measurement without the need for calibrations. An atomic magnetometer relies on the fundamental constants of nature to translate magnetic fields into a measurable Larmor

Microresonator Device Research

Ongoing
In the last few years a revolutionary paradigm for optical frequency combs and ultrastable continuous-wave lasers has emerged based on nonlinear optics in optical microresonators. Such microresonator devices can now be realized using millimeter-scale, chip-based photonic integrated circuits

Microresonator frequency combs for the NIST-on-a-Chip Program

Ongoing
The invention of optical-frequency combs opened many new applications in photonics from precision timing and ranging to generation of entangled states. They are composed of hundreds to millions of optical modes whose frequencies conform to a simple relationship, ν n = n × f rep +f 0, where n is the

Modeling and Simulation of Nanofabrication (Archived)

Completed
While self-assembly is still in its relative infancy with respect to practical use, with much additional research required to reach maturity, the more widely utilized top-down methods will continue to require advances and modifications to improve current nanomanufacturing techniques. This modeling

Molecular Physiology

Ongoing
In close collaboration with experimentalists, we are seeking to increase the resolution, scope, and throughput of single-biomolecule and ensemble techniques, such as nanopore-based biomolecular analysis, ultrafast vibrational spectroscopy, and FRET, among others. These developments rely heavily on

Multi-Organ Microphysiological Systems

Ongoing
We are developing tissue chips and multi-tissue microphysiological devices that support the culture of multiple tissues with physiologically relevant connections and streams of cell-culture medium. The goal in this project is to construct a device that realistically mimics human metabolism as a

Nano-biophotonics for molecular imaging

Ongoing
Nano-biophotonics consists of four broad areas: molecular bioimaging; nano-biosensors; multiplexed bioassays ; and nanotechnology-based medical practices for diagnosis and therapy. Success in these areas is challenged by the underlying complexity of biological systems. Major levels of complexity and

Nanoelectromagnetics

Ongoing
The primary goal of this program is metrology that enables advanced nanoscale device (including electronics, spintronics, and life science) development. Based on current trends in electronics, we are focusing on metrology for two classes of devices: (1) nanoscale devices utilizing and exploring new

Nanomagnet Dynamics

Completed
The motion of the magnetization in magnetic nanostructures is at the core of important technologies such as computer hard drives and magnetic memory chips. Additionally, emerging technologies such as magnetic logic and second-generation spin-torque memory chips write and read "bits" of information

Nanometer-Scale Planar Reference Materials

Ongoing
In most industrial fabs today, foundry test artifacts (wafers) are used to test metrology tools and monitor process stability. These wafers are made in partnerships between specific materials providers and metrology tool providers and may have limited or no adoption across foundries. In some

Nanoparticle Tracking for Fluidic Self Assembly (Archived)

Completed
Over the last few decades, scientists have developed a sizable library of nanoscale "building blocks." These nanoparticles have novel thermal, optical, mechanical, and chemical properties relative to their macroscopic counterparts, and organized assemblies of these components promise vast

Nanophononic Metamaterials for Thermoelectrics

Ongoing
About 68 % of the energy produced in the United States is wasted as heat lost to the environment. About a quarter of this lost heat is present at temperature gradients suitable for recovery with thermoelectric devices, which use the ability of semiconductors to generate electricity directly from

Nanoplasmonics and Three-Dimensional Plasmonic Metamaterials

Ongoing
Plasmonic materials are composed of metals and insulators that are ordered in geometric arrangements with dimensions that are fractions of the wavelength of light. Research groups are experimenting with a variety of geometric approaches, but all aim to exploit surface plasmons, which are light
Was this page helpful?