Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Projects/Programs

Displaying 26 - 50 of 55

Memory

Ongoing
While photonic systems offer very robust qbits and are excellent for transporting quantum information between locations due to their minimal interactions with their environment, they are inconvenient for the storage of quantum information in one place. As a result there is significant interest in

Micro- and nano-optomechanical systems

Ongoing
Our primary current research direction involves the use of fabricated devices with sub-wavelength periodicity (photonic crystals) as optomechanical elements. Such structures enable a rich variety of devices, including mirrors, polarizers, and filters, in a configuration that couples naturally to

Moiré Systems

Ongoing
Twisted double bilayer graphene The moiré systems of magic angle twisted bilayer graphene (MATBG) and related heterostructures support topological bands with nonzero Chern number, which is derived from the Berry curvature of the Bloch wave functions. Berry curvature is intimately related to orbital

Nanostructure Fabrication and Metrology

Completed
This project develops semiconductor nanostructures, especially self-assembled quantum dots and photonic crystals, for a variety of applications including single photonics, laser diodes, and quantum optical metrology. It also develops quantum optical metrology based on other sources and detectors

Nonlinear Optics for Quantum Information and Networking

Ongoing
Quantum networking and distributed quantum sensing will require photonic links (so called flying qubits) to connect nodes and enable scaling to larger distances and network sizes. An interconnect may consist of a photon going from one node to another where both nodes operate at the same wavelength

Novel Sources for Focused-ion Beams

Completed
Commercial focused ion beams (FIBs) are used in a wide variety of applications. For example, they serve as diagnostic tools, slicing through a nanodevice to expose its internal structure. They can also shape nanoscale materials either by adding atoms to a structure or by shaving them off. And they

Platform for Realizing Integrated Molecule Experiments (PRIME)

Ongoing
Blackbodies realize a clear relationship between radiated power and temperature through Planck’s law. While a reliable instrument for temperature and power calibrations, blackbodies are afflicted with a plethora of systematics (e.g., non-ideal emissivity, propagation loss, temperature gradients

Precision Materials for Quantum Devices

Ongoing
MBE System Our fabrication system is composed of ultra-high vacuum (UHV) chambers that support the in-vacuum exchange of 75 mm wafers without exposure to air as seen in Figure 1. These chambers are: (1) a deposition chamber with electron gun deposition, UHV compatible sputter guns, in situ shadow

Precision Spectroscopy and Quantum Control of Trapped Molecular Ions

Ongoing
Spectroscopy and Quantum Control of Molecular Ions Molecules exhibit vibration and rotation of their nuclei, degrees of freedom not present in atoms, and less stringent selection rules for transitions. This creates experimental challenges and great opportunities for exploring new physics. In this

Quantum Bioimaging

Ongoing
Our efforts in BBD are focused on using the quantum nature of light to facilitate enhanced and novel measurement technologies for biological samples. For example, so-called bright squeezed laser sources enable imaging and sensing with less noise than is classically possible. Additionally, entangled

Quantum Biophotonics

Ongoing
Applying recent advances in single-photon detection along with novel data processing methods developed in the quantum optics community opens fundamentally new opportunities for faint-light metrology down to that related to just a single molecule – i.e. precisely the conditions for bio-optical

Quantum Communications and Networks

Ongoing
Key Components of Quantum Repeaters and Quantum Network Systems Single Photon Sources: An ideal single photon entangled pair source for a quantum repeater application should satisfy several conditions simultaneously. Since photons must interact efficiently with a quantum memory, the source must emit

Quantum Computation and Simulation with Neutral Atoms

Ongoing
Advances in quantum information have the potential to significantly improve sensor technology, complete computational tasks unattainable by classical means, provide understanding of complex many-body systems, and yield new insight regarding the nature of quantum physics. At NIST and around the world

Quantum Computing with Trapped Ions

Ongoing
Quantum Computing with Trapped Ions We pursue proof-of-concept experiments in quantum information processing and quantum control with trapped ions. In addition to pushing current limits on traditional quantum gate-based architectures for quantum computing we explore alternative approaches to

Quantum Conductance

Ongoing
The quantum Hall effect (QHE), and devices that exhibit it, will continue to serve as the foundation of the ohm while also expanding its territory into other SI derived units. The world adopted the quantum SI in 2019, and it remains essential that the global metrology community pushes forth and

Quantum Many-Body Physics, Quantum Optics, and Quantum Information

Ongoing
Differences between typical AMO and condensed matter systems bring with them exciting new physics. In contrast to condensed matter systems, AMO systems are often studied far out of equilibrium, are evolving in time, and are subject to dissipation. As a result, many-body AMO systems open a whole new

Quantum Networking with Trapped Ions

Ongoing
The goal of a quantum network is to establish entanglement as a resource between distant locations. Shared entanglement over long distances may enable distributed quantum computing, quantum-enhanced long-baseline interferometry, the transmission of complex quantum states, or a variety of other

Quantum Optical Networks

Ongoing
The program's technical research areas are: Architecture research for Quantum Optical Networks and integration with classical networks Management (label, identify, track) and Control Plane (signal and route optical paths) Software Stacks Performance monitoring for end-to-end Quality of Entanglement

Quantum Physics Theory

Ongoing
The scope of the work ranges from calculations of QED effects in atoms to detailed studies of photon wave functions.

Quantum Simulation and Sensing with Trapped Ions

Ongoing
Entanglement between individual quantum objects exponentially increases the complexity of quantum many-body systems, so systems with more than 30-40 quantum bits cannot be fully studied using conventional techniques and computers. To make progress at this frontier of physics, we are pursuing Feynman

Silicon-based Solid-State Analog Quantum Simulators

Ongoing
Why Atom-based Si AQS Analog quantum simulators are designed quantum systems with a tunable Hamiltonian to emulate complex quantum systems intractable using classical computers due to the exponential growth of the calculations with system size. Simulating strongly interacting fermions (electrons) on

Single photon measurements: Single Photon Tunneling

Completed
We are studying what happens when a single particle (in this case a photon) crosses a tunneling barrier. This is a particularly interesting question because tunneling is a fundamental distinguishing characteristic of quantum mechanics and it implies remarkable properties such as barrier crossing

Single Photonics and Quantum Information

Ongoing
One of the activities in this group is the development of single photon technologies for quantum information science and technology. We work closely with the Nanostructure Fabrication and Metrology Project on the generation of novel non-classical states of light and the detection of single photons

Sources, detectors and metrology

Ongoing
Detectors Detectors that can register individual photons are key to applications in quantum information, metrology, biology, and remote sensing, each having its own distinct detection requirements. In many ways, a single-photon detector is the device that spans the quantum-to-classical divide
Was this page helpful?