Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Projects/Programs

Displaying 51 - 75 of 96

Nature of the Threat

Ongoing
"Improving Particle Collection Efficiency of Sampling Wipes used for Trace Chemical Detection", Gillen, Greg and Lawrence, Jeffrey and Sisco, Edward and Staymates, Matthew E. and Verkouteren, Jennifer and Robinson, Elizabeth L. and Bulk, Alexander, Anal. Methods, 14, 581-587 (2022). http://dx.doi

NCAL: Data Management

Ongoing
In the mechanical testing and materials science communities there is not a widely accepted solution for data management of test data. As part of NIST efforts on data archiving, provenance, and availability, we have worked to improve our data practices. We have extended our system beyond many out-of

NCAL: Diffraction Stress Measurement Under Applied Load

Ongoing
Using X-ray diffraction (XRD) techniques one can measure the full stress tensor just inside the surface of a sheet metal specimen under applied loading. This permits the measurement of biaxial stress states resulting from directly applied deformation (see NCAL: Multiaxial Material Performance) or

NCAL: Intermediate Strain Rate Testing

Ongoing
This project seeks to improve servohydraulic testing methods at intermediate strain rates by addressing the well-known problems associated with excessive stress oscillations (ringing) that currently limit our understanding of the mechanical behavior of engineering materials for loading conditions

NCAL: International Documentary Standards Activities

Ongoing
NIST Center for Automotive Lightweighting (NCAL) staff participate in many different international standards committees (e.g. ISO TC 164, ASTM E28 and D30); however, our main focus has been in the mechanical testing of metals and, to a lesser extent, composites. We work on the calibration and

NCAL: Materials Testing 2.0

Ongoing
The traditional approach to calibrating material models, known as Materials Testing 1.0, is a time-consuming and costly process that requires multiple experiments to be performed on different types of testing equipment. This not only results in high capital costs for testing machines but also leads

NCAL: Multiaxial Material Performance

Ongoing
Modern metal forming methods are designed and optimized using digital models of specific manufacturing operations. These models rely on a precise understanding of the mechanical behavior of sheet materials as they undergo multiaxial loading out to large plastic strains without failure (necking or

NCAL: NIST Center for Automotive Lightweighting

Ongoing
The ongoing development of new, advanced lightweight materials presents opportunities for the USA automotive industry to produce better, more reliable and less expensive products provided the new materials can be efficiently manufactured. The use of lightweight materials in automobiles, such as

NCAL: Quantifying Crystallographic Texture and Phase Fraction

Ongoing
Predicting the deformation and force response of a polycrystalline material with the level of accuracy needed by today’s manufacturers requires knowledge of the aggregate deformation and force response of all the grains in the material. Polycrystalline materials will respond differently depending on

NCAL: Tension-Compression Testing

Ongoing
The inability to predict the mechanical behavior of new automotive alloys during forming has generated strong demand in industry for more advanced material models and test methods necessary to calibrate them. Industry is particularly interested in modeling the behavior of advanced sheet metals

Neuromorphic Device Measurements

Ongoing
One type of device that is emerging as an attractive artificial synapse is the resistive switch, or memristor. These devices, which usually consist of a thin layer of oxide between two electrodes, have conductivity that depends on their history of applied voltage, and thus have highly nonlinear

NIST Standard Reference Simulation Website

Ongoing
Molecular simulations, in particular Monte Carlo Molecular Simulation and Molecular Dynamics Simulation, are methods for computing the properties of some kind of system, for which the intermolecular interactions are specified via mathematical relationships derived from statistical mechanics. Since

Open Port Liquid Interface Mass Spectrometry

Ongoing
Rapid screening for chemical traces of explosives and narcotics is widely used to support homeland security and law enforcement. These target compounds span a range of physicochemical properties from organic to inorganic, with preferential ionization pathways in both negative and positive mode

Optical and Optoelectronic Materials Characterization

Ongoing
Today's electronics have reached a point where sheer computation power has combined form and function as the key driver of large consumer markets. The demand for portable and pervasive electronics with greater functionality promises significant changes over the next decades in how society interacts

Personal Body Armor

Completed
To quantify the impact of mechanical degradation on ballistic fibers, NIST developed a novel device for controlled folding of yarns and woven fabrics. In addition, we developed test protocols that employ single fibers to assess the effect of folding using a recently developed modified single fiber

Polymer Advanced Manufacturing and Rheology

Ongoing
The manufacture of polymeric materials, whether from virgin or reclaimed sources, occurs under highly non-equilibrium conditions where temperature and stress fields evolve rapidly. The quality of the materials made from these processes depends not only on the composition of the starting material

Polymer Formulations

Completed
Bringing new and optimized formulated products to market requires measurements that will allow rapid assessment of the structure and properties of multicomponent mixtures over large parameter spaces. To this end, we are developing microfluidic "lab on a chip" technologies that enable researchers to

Polymer Membranes

Ongoing
We are developing and applying the following advanced tools to measure the structure, dynamics, and performance of polymer-based membranes and sorbents: Vibrational Spectroscopy We have developed a custom-built tandem quartz crystal microbalance (QCM), which measures total mass uptake of adsorbed

Powder Diffraction SRMs

Ongoing
This program strives to produce the highest-quality, traceable powders and other artifacts for x-ray diffraction calibration. (to be completed)

Precision X-ray Emission Line Measurements

Ongoing
Precise knowledge of the shape and position of x-ray emission lines is the basis of connecting x-ray diffraction measurements to the Système Internationale d'Unités (SI), the official worldwide standard for making any measurement. Measurements of position of x-ray emission lines have been made been

Radioanalytical Metrology

Ongoing
The Group engages in a wide range of methods applicable to the detection and characterization of nuclear materials. The work can benefit environmental studies, waste remediation, naturally occurring radioactivity detection and characterization and general radioanalytical metrology. Expertise in

Raman Metrology and Instrumentation

Ongoing
Raman spectroscopy/microscopy is a powerful optical technique for rapid, non-destructive, label-free characterization of materials. It works under ambient conditions, often without requirement of any sample preparation. Applications span microelectronics, pharmaceutical, security and fundamental
Was this page helpful?