Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Projects/Programs: Grand Challenge 2: Advanced Metrology for Future Microelectronics Manufacturing

Displaying 1 - 10 of 10

Advanced Metrology to Enable Next Generation EUV Photoresists

Ongoing
EUV (extreme ultraviolet) lithography, the technology that “saved Moore’s Law,” is widely regarded as the future of cutting-edge nanofabrication. It was developed in the United States and U.S. companies in many parts of the EUV ecosystem have established dominance in the field that must be defended

Advancing Power Electronics with Defect Metrology

Ongoing
Power electronics play a central role in all aspects of electrical energy storage, distribution, conversion, and consumption. Currently, power electronics heavily rely on Si-based insulated-gate bipolar transistors (IGBT), which have large footprints, are inefficient, and require extensive cooling

Electron-Solid Interactions

Ongoing
A measuring instrument produces a signal that depends upon the value of the measurand. The value and its uncertainty are inferred from the signal by using a model of their relationship. Erroneous models lead to erroneous inference. The accuracy of SEM (scanning electron microscopy) is limited by

EUV Scatterometry

Ongoing
To measure and inspect the smallest printed features on an IC chip, researchers and manufacturers use a combination of electron scanning modalities (i.e., transmission electron and scanning electron microscopies) and an optical method, scatterometry. Industrially, the most common modality for

Mapping of Thermal Properties at the Nanoscale

Ongoing
Continuous advances in the performance and functionality of semiconductor devices have been driven by scale reduction, incorporation of new and nanomaterials, and by heterogeneous integration (HI). However, such scaling and integrated architecture has rendered existing thermal metrology inadequate

Strain Measurement for Semiconductor Devices and Packages

Ongoing
Strain is a critical parameter that influences both electrical and mechanical failures of devices, however, measuring strain in complex 3D geometries and vanishingly small feature sizes remains a challenge for manufacturers. Data provided by strain measurements can be used to validate computational