Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Projects/Programs

Displaying 1 - 8 of 8

Atomic-force microscopy

Ongoing
Atomic-force microscopy enables subnanometer imaging resolution, to extract geometric parameters of reference structures that advance measurement science, and to quantify the accuracy of device design and fabrication for stakeholders. We are advancing two primary atomic-force microscopy systems

Biomolecular assembly

Ongoing
The integration of new materials or components into the design and production of diverse nanotechnologies, ranging from electronic devices to therapeutic particles, requires a quantitative understanding of process–structure–property relationships, as well as interactions with other entities in the

Electron-beam lithography

Ongoing
Electron-beam lithography allows fine control of nanostructure features that form the basis of diverse device technologies. Lateral resolution of 10 nm, placement accuracy of 1 nm, and patterning fields of 1 mm are all possible. However, achieving these performance metrics depends on many

Electron-Solid Interactions

Ongoing
A measuring instrument produces a signal that depends upon the value of the measurand. The value and its uncertainty are inferred from the signal by using a model of their relationship. Erroneous models lead to erroneous inference. The accuracy of SEM (scanning electron microscopy) is limited by

Focused-ion-beam machining

Ongoing
Structure determines function in diverse nanotechnologies, so that making devices to control or measure nanoscale phenomena begins with control of nanoscale structure. Few fabrication systems outperform the focused ion beam to pattern nanostructures by directing ions of various elements to an

Scanning-electron microscopy

Ongoing
Nanoscale measurements provide necessary feedback for the fabrication of nanoscale structures. However, achieving subnanometer uncertainty is challenging for even the best microscope systems. The challenge is even greater for three-dimensional nanostructures, which often require measurement of

Super-resolution optical microscopy

Ongoing
Optical microscopy has been fundamental to science for four centuries, enabling resolution of the microscale. In the last two decades, scientists have made the remarkable discovery that super-resolution methods can extend optical microscopy deep into the nanoscale. It is now possible to detect and