Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications by: Alexandra (Aly) Artusio-Glimpse (Fed)

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 26 - 32 of 32

Micromachined force balance for optical power measurement by radiation pressure sensing

August 6, 2018
Author(s)
Ivan Ryger, Alexandra B. Artusio-Glimpse, Paul A. Williams, Nathan A. Tomlin, Michelle S. Stephens, Matthew T. Spidell, Kyle A. Rogers, John H. Lehman
We introduce a micromachined force scale for laser power measurement by means of radiation pressure sensing. With this technique, the measured laser light is not absorbed and can be utilized while being measured. We employ silicon micromachining technology

Point-of-Use, Nonexclusive, High-Power Laser Power Meter

June 19, 2018
Author(s)
Aly Artusio-Glimpse, Ivan Ryger, Paul A. Williams, John H. Lehman
We have developed a small-package, high-power laser power meter that directly measures radiation pressure on a high-reflectivity mirror for nonexclusive, in situ laser measurements without pick- off schemes. Furthermore, our non-inertial design inhibits

Measurement of Radio-Frequency Radiation Pressure

February 13, 2018
Author(s)
Christopher L. Holloway, Alexandra B. Artusio-Glimpse, Matthew T. Simons, Ivan Ryger
In this work we perform measurements of the radiation pressure of a radio-frequency (RF) electromagnetic field which will lead to a new SI traceable power calibration. There are several groups around the world investigating methods to perform more direct

Prototype Tests of a Miniature Radiation Pressure Sensor

July 2, 2017
Author(s)
Alexandra B. Artusio-Glimpse, Paul A. Williams, Nathan A. Tomlin, Ivan Ryger, Michelle S. Stephens, John H. Lehman
Using reflection, radiation pressure (RP) sensors provide a means for in-situ power measurement simply and accurately. The first realization of multi-kW RP power meters (RPPM) established a new paradigm of optical power measurement technology [1]. Our

Silicon Micromachined Capacitive Force Scale: The Way to Improved Radiation Pressure Sensing

July 2, 2017
Author(s)
Ivan Ryger, Paul A. Williams, Nathan A. Tomlin, Alexandra B. Artusio-Glimpse, Michelle S. Stephens, Matthew T. Spidell, John H. Lehman
Measurement of high optical power using radiation pressure sensing [1] is attractive for its non-absorbing power measurment allowing compact sensor dimensions, faster response times and negligible optical power dissipation compared to standard thermal

Development of a miniature radiation pressure-measuring microscale

Author(s)
Ivan Ryger, Alexandra B. Artusio-Glimpse, Paul A. Williams, Nathan A. Tomlin, Michelle S. Stephens, Matthew T. Spidell, John H. Lehman
Traditional methods for accurate measurement of high-power lasers involve total absorption of the laser light [1]. Our method, however, measures photon pressure exerted on a mirror without obstruction of the laser beam. The technique enables in situ

Feedback control of a nonlinear electrostatic force transducer

Author(s)
Ivan Ryger, Stefan Chamraz, Richard Balogh, Alexandra B. Artusio-Glimpse, Michelle S. Stephens, John H. Lehman, Paul A. Williams
In this article, we document a design process for a feedback controller for a nonlinear electrostatic transducer that exhibits a strong unloaded resonance. This is being used for precision optical power measurement by means of a photon force measurement