Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications by: Alexandra (Aly) Artusio-Glimpse (Fed)

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 26 - 46 of 46

The causal relationship between melt pool geometry and energy absorption measured in real time during laser-based manufacturing

December 16, 2021
Author(s)
Brian Simonds, Jack R. Tanner, Aly Artusio-Glimpse, Paul A. Williams, Niranjan Parab, Cang Zhao, Tao Sun
During laser powder bed fusion additive manufacturing, a protean pool of molten metal governs a complex energy absorption process as it presents as either a highly reflective surface, a deeply absorbing cavity (a keyhole), or some amalgamation thereof. To

Enhancement of electromagnetically induced transparency based Rydberg-atom electrometry through population repumping

November 22, 2021
Author(s)
chris holloway, Nik Prajapati, MATTHEW SIMONS, Samuel Berweger, Aly Artusio-Glimpse, Amy Robinson
We demonstrate the improvement of Rydberg electrometry based on electromagnetically induced transparency (EIT) through the use of a ground state repumping laser. Though there are many factors that limit the sensitivity of radio frequency field measurements

Continuous radio-frequency electric-field detection through adjacent Rydberg resonance tuning

September 24, 2021
Author(s)
MATTHEW SIMONS, Aly Artusio-Glimpse, chris holloway, Eric Imhof, Steven Jefferts, Robert Wyllie, Brian Sawyer, Thad Walker
We demonstrate the use of multiple atomic-level Rydberg-atom schemes for continuous frequency detection of radio-frequency (RF) fields. Resonant detection of RF fields by electromagnetically induced transparency and Autler-Townes (AT) splitting in Rydberg

Radiation Pressure Laser Power Meter for Industrial Laser Machining

September 10, 2020
Author(s)
Aly Artusio-Glimpse, Ivan Ryger, Natalia A. Azarova, Paul A. Williams, John H. Lehman
Demonstration and validation of a linear radiation pressure-based high-power laser power meter is presented. To date, this device is the most promising real-time, absolute power meter for laser material processing where power monitoring is crucial.

Simultaneous High-speed X-ray Transmission Imaging and Absolute Dynamic Absorptance Measurements during High-power Laser-metal Processing

September 10, 2020
Author(s)
Brian Simonds, Jack R. Tanner, Alexandra B. Artusio-Glimpse, Paul A. Williams, Niranjan Parab, Cang Zhao, Tao Sun
During high-power laser metal processing, the absorbed light is intimately related to the molten metal cavity shape. For the first time, we directly and simultaneously observe this relationship by implementing state-of-the-art techniques of high-speed x

HALO - High Amplification Laser-pressure Optic

June 21, 2020
Author(s)
Alexandra B. Artusio-Glimpse, Kyle A. Rogers, Paul A. Williams, John H. Lehman
Efforts are underway at the National Institute of Standards and Technology to drastically reduce the uncertainty of laser power measurements using radiation pressure. The High Amplification Laser-pressure Optic (HALO) system is a cornerstone of this effort

Radiation-Pressure Enabled Traceable Laser Sources at High CW Powers

January 4, 2019
Author(s)
Paul A. Williams, Alexandra B. Artusio-Glimpse, Joshua A. Hadler, Daniel King, Ivan Ryger, Tam Vo, John H. Lehman, Kyle A. Rogers
Radiation pressure has recently been shown to have practical application for multi-kilowatt CW laser power measurement. One key advantage lies in its ability to measure without absorbing the laser beam. This enables a new measurement paradigm where laser

MEMS non-absorbing electromagnetic power sensor employing the effect of radiation pressure

September 8, 2018
Author(s)
Ivan Ryger, Aly Artusio-Glimpse, Paul A. Williams, Gordon A. Shaw, Matt Simons, Christopher L. Holloway, John H. Lehman
We demonstrate a compact electromagnetic power sensor based on force effects of electromagnetic radiation onto a highly reflective mirror surface. Unlike the conventional power measurement approach, the photons are not absorbed and can be further used in

Mechanical characterization of planar springs for compact radiation pressure power meters

September 7, 2018
Author(s)
Alexandra B. Artusio-Glimpse, Ivan Ryger, Paul A. Williams, Kyle A. Rogers, Daniel W. Rahn, Andrew J. Walowitz, John H. Lehman
Counter to conventional methods of measuring laser optical power, radiation pressure-based power meters operate by reflection rather than absorption. This provides an opportunity for in situ, non-destructive total beam power measurement. Compact radiation

Micromachined force balance for optical power measurement by radiation pressure sensing

August 6, 2018
Author(s)
Ivan Ryger, Alexandra B. Artusio-Glimpse, Paul A. Williams, Nathan A. Tomlin, Michelle S. Stephens, Matthew T. Spidell, Kyle A. Rogers, John H. Lehman
We introduce a micromachined force scale for laser power measurement by means of radiation pressure sensing. With this technique, the measured laser light is not absorbed and can be utilized while being measured. We employ silicon micromachining technology

Point-of-Use, Nonexclusive, High-Power Laser Power Meter

June 19, 2018
Author(s)
Aly Artusio-Glimpse, Ivan Ryger, Paul A. Williams, John H. Lehman
We have developed a small-package, high-power laser power meter that directly measures radiation pressure on a high-reflectivity mirror for nonexclusive, in situ laser measurements without pick- off schemes. Furthermore, our non-inertial design inhibits

Measurement of Radio-Frequency Radiation Pressure

February 13, 2018
Author(s)
Christopher L. Holloway, Alexandra B. Artusio-Glimpse, Matthew T. Simons, Ivan Ryger
In this work we perform measurements of the radiation pressure of a radio-frequency (RF) electromagnetic field which will lead to a new SI traceable power calibration. There are several groups around the world investigating methods to perform more direct

Prototype Tests of a Miniature Radiation Pressure Sensor

July 2, 2017
Author(s)
Alexandra B. Artusio-Glimpse, Paul A. Williams, Nathan A. Tomlin, Ivan Ryger, Michelle S. Stephens, John H. Lehman
Using reflection, radiation pressure (RP) sensors provide a means for in-situ power measurement simply and accurately. The first realization of multi-kW RP power meters (RPPM) established a new paradigm of optical power measurement technology [1]. Our

Silicon Micromachined Capacitive Force Scale: The Way to Improved Radiation Pressure Sensing

July 2, 2017
Author(s)
Ivan Ryger, Paul A. Williams, Nathan A. Tomlin, Alexandra B. Artusio-Glimpse, Michelle S. Stephens, Matthew T. Spidell, John H. Lehman
Measurement of high optical power using radiation pressure sensing [1] is attractive for its non-absorbing power measurment allowing compact sensor dimensions, faster response times and negligible optical power dissipation compared to standard thermal

Development of a miniature radiation pressure-measuring microscale

Author(s)
Ivan Ryger, Alexandra B. Artusio-Glimpse, Paul A. Williams, Nathan A. Tomlin, Michelle S. Stephens, Matthew T. Spidell, John H. Lehman
Traditional methods for accurate measurement of high-power lasers involve total absorption of the laser light [1]. Our method, however, measures photon pressure exerted on a mirror without obstruction of the laser beam. The technique enables in situ

Feedback control of a nonlinear electrostatic force transducer

Author(s)
Ivan Ryger, Stefan Chamraz, Richard Balogh, Alexandra B. Artusio-Glimpse, Michelle S. Stephens, John H. Lehman, Paul A. Williams
In this article, we document a design process for a feedback controller for a nonlinear electrostatic transducer that exhibits a strong unloaded resonance. This is being used for precision optical power measurement by means of a photon force measurement
Was this page helpful?