Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications by: Rob Horansky (Fed)

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 1 - 25 of 59

Robust Measurements for RF Fingerprinting with Constellation Patterns of Radiated Waveforms

November 20, 2023
Author(s)
Ameya Ramadurgakar, Jake Rezac, Lennart Heijnen, Kate Remley, Dylan Williams, MELINDA PIKET-MAY, Rob Horansky
We introduce a type of RF fingerprint for nondestructive, cellular device identification. The new fingerprinting algorithm, termed Eigenphones, is a data-driven technique based on a singular value decomposition of a user equipment's symbol-constellation

A Measurement-Referenced Error Vector Magnitude for Counterfeit Cellular Device Detection

October 17, 2023
Author(s)
Ameya Ramadurgakar, Kate Remley, Dylan Williams, Jake Rezac, MELINDA PIKET-MAY, Rob Horansky
Standard formulations of error vector magnitude compare a wireless device's symbol constellation to an ideal reference constellation. In this work, we utilize the residual error vector magnitude, which uses measurements of a wireless device to define a

Dynamic Range by Design in OTA EVM measurements

October 17, 2023
Author(s)
Paritosh Manurkar, Dan Kuester, Joshua Kast, Rob Horansky
We present an experimental approach to design an over-the-air (OTA) millimeter-wave measurement of error vector magnitude (EVM) and associated uncertainties that include correlations and nonlinearities. Our approach uses a waveguide-variable attenuator at

Recommended Practices for Calibrated Millimeter-Wave Modulated-Signal Measurements

June 14, 2023
Author(s)
Paritosh Manurkar, Joshua Kast, Dylan Williams, Rob Horansky, Dan Kuester, Kate Remley
In a millimeter-wave modulated-signal measurement system with several calibration reference planes, we want the measured signal to be a close replica of the ideal signal at the reference plane which connects the near-ideal measured signal to subsequent

Practical Correlation-Matrix Approaches for Standardized Testing of Wireless Devices in Reverberation Chambers

March 30, 2023
Author(s)
Kate Remley, Sara Catteau, Ahmed Hussain, Carnot Nogueira, Mats Kristoffersen, John Kvarnstrand, Brett Horrocks, Jonas Friden, Rob Horansky, Dylan Williams
We extend the autocorrelation-based approaches currently used in standards to full correlation matrix-based approaches in order to identify correlation between both spatially adjacent and non-adjacent samples in reverberation-chamber measurements. We

Reference Measurements of Error Vector Magnitude

August 29, 2022
Author(s)
Paritosh Manurkar, Christopher Silva, Joshua Kast, Rob Horansky, Dylan Williams, Kate Remley
We demonstrate the suitability of the IEEE P1765 Reference Waveforms in ascertaining EVM and the associated uncertainties by performing traceable measurements on a calibrated equivalent-time sampling oscilloscope at 44 GHz. With this knowledge, a user can

mmWave Modulated-Signal Measurements for OTA Test

June 24, 2022
Author(s)
Joshua Kast, Paritosh Manurkar, Kate Remley, Rob Horansky, Dylan Williams
We apply a large-signal network analyzer to the measurement of arbitrarily long repetitive millimeter-wave modulated signals transmitted by user equipment generating intermodulation products in an over-the-air test environment. The measurements take

Methodology for Measuring the Frequency Dependence of Multipath Channels Across the Millimeter-Wave Bands

April 19, 2022
Author(s)
Damla Guven, Ben Jamroz, Jack Chuang, Camillo Gentile, Rob Horansky, Kate Remley, Dylan Williams, Jeanne Quimby, Rod Leonhardt
Millimeter-wave (mmWave) communications promise Gigabits-per-second data rates thanks to the availability of large swaths of bandwidth between 10–100 GHz. Although cellular operators prefer the lower portions of the bands due to the general belief that

Proceedings of the 2nd CREST Nano-Virtual-Labs Joint Workshop on Superconductivity

October 12, 2021
Author(s)
Kent D. Irwin, James A. Beall, W.Bertrand (Randy) Doriese, William Duncan, S. L. Ferreira, Gene C. Hilton, Rob Horansky, John Mates, Nathan A. Tomlin, Galen O'Neil, Carl D. Reintsema, Dan Schmidt, Joel Ullom, Leila R. Vale
Superconductivity is a powerful tool for the detection of electromagnetic radiation and the energy in particle interactions. One leading superconducting detector technology is the superconducting transition-edge sensor (TES), which uses a superconducting

Laboratory Method for Recording AWS-3 LTE Waveforms

May 11, 2021
Author(s)
Aric Sanders, Keith Forsyth, Rob Horansky, Azizollah Kord, Duncan McGillivray
The focus of this work provides a library of actual long-term evolution (LTE) user equipment (UE) emissions with sufficient time resolution and dynamic range for use in spectrum sharing, and interference susceptibility studies. National Advanced Spectrum

A Preliminary Study on Uncertainty of NB-IoT Measurements in Reverberation Chambers

March 28, 2021
Author(s)
Anouk Hubrechsen, Vincent T. Neylon, Kate Remley, Rob Jones, Rob Horansky, Laurens A. Bronckers
New protocols related to internet-of-things applications may introduce previously unnoticed measurement effects due to the narrowband nature of these protocols. Such technologies also require less loading to meet the coherence bandwidth conditions, which

NB-IoT Devices in Reverberation Chambers: A Comprehensive Uncertainty Analysis

February 17, 2021
Author(s)
Catherine Remley, Anouk Hubrechsen, Robert Jones, Robert Horansky, Vincent Neylon, Laurens A. Bronckers
New protocols related to internet-of-things applications may introduce previously unnoticed measurement effects in reverberation chambers due to the narrowband nature of these protocols. Such technologies also require less loading to meet the coherence

Precision Millimeter-Wave Modulated Wideband Source for Over-The-Air Reference at 92.4 GHz

April 22, 2020
Author(s)
Paritosh Manurkar, Robert D. Horansky, Benjamin F. Jamroz, Jeffrey A. Jargon, Dylan F. Williams, Catherine A. Remley
As the next generation communications technology continues to evolve to utilize millimeter-wave frequencies, calibration methods are needed for the nonidealities related to these frequencies in communications electronics. In this work, we demonstrate a 1

Characterizing LTE User Equipment Emissions: Factor Screening

September 30, 2019
Author(s)
Jason Coder, Adam Wunderlich, Michael R. Frey, Paul T. Blanchard, Dan Kuester, Azizollah Kord, Max Lees, Aric Sanders, Jolene Splett, Lucas N. Koepke, Rob Horansky, Duncan McGillivray, John M. Ladbury, Jeffrey T. Correia, Venkatesh Ramaswamy, Jerediah Fevold, Shawn Lefebre, Jacob K. Johnson, John Carpenter, Mark Lofquist, Keith Hartley, Melissa Midzor
Characterizations of long-term evolution (LTE) user equipment (UE) emissions are a key ingredient in models of interference between wireless cellular networks and other systems that must use the same radio frequency spectrum. This report presents (i) a

The Effect of Peripheral Equipment Loading on Reverberation-Chamber Metrics

September 1, 2019
Author(s)
Anouk Hubrechsen, Laurens A. Bronckers, Kate Remley, Rob Jones, Rob Horansky, Ad Reniers, Anne Roc'h, Bart Smolders
Measuring wireless devices in a reverberation chamber often requires ancillary equipment to be present in the chamber. This paper illustrates the effect of their presence on metrics that are important in wireless device tests, such as chamber decay time

LTE Handset Emissions: Radiation Pattern Measurements Final Test Report

August 16, 2019
Author(s)
Robert D. Horansky, Jason B. Coder, John M. Ladbury
The Defense Information Systems Agency (DISA) Defense Spectrum Organization (DSO) throughthe Spectrum Sharing Test and Development (SSTD) program proposed a National AdvancedSpectrum and Communications Test Network (NASCTN) measurement campaign to

Large-Signal-Network-Analyzer Phase Calibration on an Arbitrary Grid

April 30, 2019
Author(s)
Aric Sanders, Dylan Williams, Joshua Kast, Kate Remley, Rob Horansky
We have developed a method for improving the synchronization of large-signal network analyzers and transferring "cross-frequency" phase calibrations from a calibrated sampling oscilloscope to the large-signal vector network analyzer on an arbitrary

Correlation-Based Uncertainty in Loaded Reverberation Chambers

October 1, 2018
Author(s)
Maria G. Becker, Michael R. Frey, Sarah B. Streett, Catherine A. Remley, Robert D. Horansky, Damir Senic
When reverberation chambers are loaded to increase the coherence bandwidth for modulated-signal measurements, a secondary effect is decreased spatial uniformity. We show that an appropriate choice of stirring sequence, consisting of a combination of mode

Sub-nanosecond Tuning of Microwave Resonators Fabricated on Ruddlesden-Popper Dielectric Thin Films

July 9, 2018
Author(s)
Aaron M. Hagerstrom, Xifeng Lu, Natalie Dawley, H. Nair, Jordi Mateu, Robert D. Horansky, Charles A. Little, James C. Booth, Christian J. Long
Voltage-tunable dielectric materials are widely used for microwave-frequency signal processing. Among tunable dielectric thin films, (SrTiO3)nSrO Ruddlesden-Popper (RP) superlattices have exceptionally low loss at high frequencies. This paper reports the

Importance of Preserving Correlations in Error-Vector-MagnitudeUncertainty

June 14, 2018
Author(s)
Ben Jamroz, Dylan Williams, Kate Remley, Rob Horansky
Correlations are an important consideration in the uncertainty analysis of high-frequency electronic systems. We introduce a method to scramble the correlations of a correlated uncertainty analysis and develop a software tool to do this as part of the NIST

Spatial Channels for Wireless Over-the-Air Measurements in Reverberation Chambers

April 9, 2018
Author(s)
Maria G. Becker, Rob Horansky, Damir Senic, Vincent T. Neylon, Kate Remley
NIST is developing a hybrid test chamber for over-the-air characterization of the next generation of wireless devices in spatial channel environments. By combining features of both reverberation and anechoic chambers, the hybrid chamber will produce

A NIST Testbed Approach to Verifying mmWave Wireless Communication Signals

January 18, 2018
Author(s)
Catherine A. Remley, Dylan F. Williams, Robert D. Horansky
This presentation discusses NIST methods for providing traceable modulated signals at microwave and millimeter-wave frequencies in both conducted and free-field environments. It was presented at the 3rd NSF mmWave Research Coordination Network Workshop in