Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications by: Sergey Polyakov (Fed)

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 26 - 50 of 77

Full statistical mode reconstruction of a light field via a photon-number resolved measurement

May 2, 2017
Author(s)
Ivan A. Burenkov, Sergey V. Polyakov, Thomas Gerrits, Timothy J. Bartley, Georg Harder, Christine Silberhorn, Ankita Sharma, Elizabeth A. Goldschmidt
We present a method to reconstruct the mode structure and optical losses of multimode conjugated optical fields using an experimentally measured joint photon-number probability distribution. We demonstrate nearly-perfect reconstruction of a multimode field

Scalable, chip-based optically-controlled gates for quantum information processing

November 15, 2016
Author(s)
Sergey V. Polyakov, Ivan Burenkov, Olga Tikhonova
Here we present a simple and robust method to build on-the-fly configurable quantum gates based on photonic exchange between quantum nodes. The idea is based on a high reflectivity of Bragg grating structures near resonant wavelengths. The control is

Statistically background-free, phase-preserving parametric up-conversion with faint light

July 9, 2015
Author(s)
Yu-Hsiang Cheng, Tim O. Thomay, Glenn S. Solomon, Alan L. Migdall, Sergey Polyakov
We demonstrate phase preservation in a frequency up-conversion process at the single-photon level. This phase preservation enables the applications of frequency conversion of entangled photon pairs. Periodically poled lithium niobate waveguides and a 1550

Single-Photon Detector Calibration

July 7, 2015
Author(s)
Sergey V. Polyakov
In this chapter we introduce the set of detector properties, common to most contemporary detectors, that should be determined for a complete characterization. Then we introduce methods for detector characterization, and finally we present practical recipes

Positive Operator-Valued Measure reconstruction of a beam-splitter tree based photon-number- resolving detector

March 30, 2015
Author(s)
Sergey V. Polyakov, Fabrizio Piacentini, Filippo Levi, A Avella, M Lopez, Stefan Kuck, Ivo P. Degiovanni, Giorgio Brida, Marco Genovese
Here we present a reconstruction of the Positive Operator-Value Measurement of a photon-number-resolving detector comprised of three 50:50 beamsplitters in a tree configuration, terminated with four single-photon avalanche detectors.

Reconstruction of mode structure of faint sources and its applications

December 19, 2014
Author(s)
Sergey V. Polyakov, Alan L. Migdall, Elizabeth A. Goldschmidt, Giorgio Brida, Stefan Kuck, Fabrizio Piacentini, Ivo P. Degiovanni, I. Ruo Berchera, Marco Genovese
We build upon our newly developed mode reconstruction technique that takes advantage of higher-order photon number statistics and propose new experiments.

Experimental Bounds on Classical Random Field Theories

December 10, 2014
Author(s)
Joffrey K. Peters, Sergey V. Polyakov, Jingyun Fan, Alan L. Migdall
Alternative theories to quantum mechanics motivate important fundamental tests of our understanding and description of the smallest physical systems. Here we place experimental limits on those classical field theories which result in power-dependent

Hybrid Detectors

November 29, 2013
Author(s)
Sergey V. Polyakov, Alan L. Migdall, Franco N. Wong, Ivo P. Degiovanni, Ian Walmsley, Hendrik B. Coldenstrodt-Ronge
We present an overview of e orts to improve photon-counting detection systems through the use of hybrid detection techniques such as spatial- and time-multiplexing of conventional detectors, and frequency up-conversion. We review the basic operation for

Photomultiplier tubes

November 29, 2013
Author(s)
Sergey V. Polyakov
Photomultiplier tubes (PMTs), also known as photomultipliers, are remarkable devices. While a PMT was the rst device to detect light at the single photon level, invented more than 80 years ago, they are widely used to this day, particularly in biological

Single-Photon Sources and Detectors Book: Chapter 1: Introduction

November 29, 2013
Author(s)
Joshua C. Bienfang, Jingyun Fan, Alan L. Migdall, Sergey V. Polyakov
In the beginning there was light. And it was good. Not long thereafter people began to look for a comprehensive understanding of its nature. While the publication record starts o a little spotty, in the fth century BC the Greek philosopher Empedocles

Mode reconstruction of a light field by multi-photon statistics

July 15, 2013
Author(s)
Elizabeth A. Goldschmidt, Fabrizio Piacentini, I. Ruo Berchera, Sergey V. Polyakov, Silke Peters, Stefan Kuck, Giorgio Brida, Ivo P. Degiovanni, Alan L. Migdall, Marco Genovese
Knowing the underlying number and structure of occupied modes of a light field plays a crucial role in minimizing loss and decoherence of quantum information. Typically, full characterization of the mode structure involves a series of several separate

Practical implementation of a test of event-based corpuscular model as an alternative to quantum mechanics

May 8, 2013
Author(s)
Sergey V. Polyakov, Alan L. Migdall, Ivo P. Degiovanni, Fabrizio Piacentini, Giorgio Brida, Marco Genovese, Paola Traina
We describe in detail the first experimental test that distinguishes between an event-based corpuscular model of the interaction of photons with matter and quantum mechanics. The test looks at the interference that results as a single photon passes through

Experimental test of an event-based corpuscular model modification as an alternative to quantum mechanics

February 13, 2013
Author(s)
Giorgio Brida, Ivo P. Degiovanni, Marco Genovese, Alan L. Migdall, Fabrizio Piacentini, Sergey Polyakov, Paola Traina
We present the first experimental test that distinguishes between an event-based corpus- cular model of the interaction of photons with matter and quantum mechanics. The test looks at the interference that results as a single photon passes through a Mach

Experimental test of an event-based corpuscular model modification as an alternative to quantum mechanics

February 13, 2013
Author(s)
Giorgio Brida, Ivo P. Degiovanni, Marco Genovese, Alan L. Migdall, Fabrizio Piacentini, Sergey Polyakov, Paola Traina
We present the first experimental test that distinguishes between an Event-Based Corpuscular Model (EBCM)9) of the interaction of photons with matter and quantum mechanics. The test looks at the interference that results as a single photon passes through a

Dynamics of a pulsed single photon source

December 18, 2012
Author(s)
Sergey V. Polyakov, Edward B. Flagg, Tim O. Thomay, Glenn S. Solomon
We propose and demonstrate a method for an independent verification of a degree of single photon purity and coherence applicable for all single-photon emitters used in pulsed mode. Using two-time second-order correlation measurements, we reconstruct the

Dynamics of the non-classical light from a single solid-state quantum emitter

October 18, 2012
Author(s)
Edward B. Flagg, Sergey Polyakov, Tim O. Thomay, Glenn S. Solomon
We measure the dynamics of a non-classical optical field using two-time second-order correlations in conjunction with pulsed excitation. The technique quantifies single-photon purity and coherence during the excitation-relaxation cycle of an emitter, which

Ancilla assisted calibration of a measuring apparatus

June 19, 2012
Author(s)
Alan L. Migdall, Giorgio Brida, L. Ciavarella, Ivo P. Degiovanni, Marco Genovese, M. G. Mingolla, M. G. A. Paris, Fabrizio Piacentini, Sergey Polyakov
The rapid development of quantum systems has enabled a wide range of novel and innovative technologies, from quantum information processing to quantum etrology and imaging [113], mainly based on optical systems. Precise characterization techniques of

M-ary state phase-shift keying discrimination below the homodyne limit

December 22, 2011
Author(s)
Francisco E. Becerra Chavez, Jingyun Fan, Gerald Baumgartner, Sergey V. Polyakov, Julius Goldhar, Jonathan Kosloski, Alan L. Migdall
We investigate a strategy for M-ary discrimination of nonorthogonal phase states with error rates below the homodyne limit. This strategy uses feed forward to update a reference field and Signal nulling for the state discrimination. We experimentally

Coalescence of Single Photons Emitted by Disparate Single Photon Sources: The Example of InAs Quantum Dots and Parametric Down-Conversion Sources

October 5, 2011
Author(s)
Sergey V. Polyakov, Andreas Muller, Alexander E. Ling, Natalia B. Rutter, Edward B. Flagg, Edward Van Keuren, Alan L. Migdall, Glenn S. Solomon
In quantum mechanics, particles in identical states are indistinguishable, giving rise to effects with no classical analog. Single photons produced by fundamentally dissimilar physical processes will in general not be indistinguishable. We show how photons

State Discriminiation Signal Nulling Receivers

September 6, 2011
Author(s)
Francisco E. Becerra Chavez, Jingyun Fan, Gerald Baumgartner, Sergey V. Polyakov, Julius Goldhar, Jonathan Kosloski, Alan L. Migdall
Optimized state-discrimination receiver strategies for nonorthogonal states can improve the capacity of the communication channels operating with error rates below the ones corresponding to conventional receivers. Coherent signal-nulling receivers use a

Single-Photon Sources and Detectors

July 27, 2011
Author(s)
M D. Eisaman, Jingyun Fan, Alan L. Migdall, Sergey Polyakov
We review the current status of single-photon-source and single-photon-detector technologies operating at wavelengths from the ultraviolet to the infrared. We discuss applications of these technologies to quantum communication, a field that is currently

Indistinguishability of single photons from dissimilar single-photon sources

June 14, 2011
Author(s)
Sergey V. Polyakov, Glenn S. Solomon, Edward B. Flagg, Alan L. Migdall, Andreas Muller
In quantum mechanics, particles in identical states are indistinguishable, giving rise to effects with no classical analog. For instance, the bosonic nature of light insures that upon interference two indistinguishable photons will coalesce into a single