Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications by: Jeeseong C. Hwang (Fed)

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 1 - 25 of 89

Radial polarization imaging of entangled biphoton state

June 11, 2025
Author(s)
Jiung Kim, Jeeseong Hwang, Martin Sohn
Polarization entanglement of single photons is a key element to enable quantum 2.0 applications such as quantum computing, quantum networks, and quantum sensing. Verification and fidelity assessment of quantum entanglement of single photon pairs correlated

Quantitative hyperspectral microscopy from single cell to tissue imaging

March 20, 2025
Author(s)
Jeeseong Hwang
This paper showcases recent research at NIST on quantitative hyperspectral imaging of single cells and tissues with a variety of imaging contrasts including scattering reflectance, transmission, and dark-field and with supervised and unsupervised data

JBO Special Issue on Hyperspectral Imaging

March 4, 2025
Author(s)
Baowei Fei, Jeeseong Hwang, Matija Milanic
The editors introduce a Journal of Biomedical Optics (JBO) feature issue on "Hyperspectral imaging." The special issue features a number of important research and review papers on new hyperspectral imaging and detection devices and associated technologies

Hyperspectral dark-field microscopy of human breast lumpectomy samples for tumor margin detection in breast-conserving surgery

May 7, 2024
Author(s)
Jeeseong Hwang, Philip Cheney, Stephen Kanick, Hanh Le, David McClatchy, Helen Zhang, John Lu, Tae Joon Cho, Kimberly Briggman, David W. Allen, Wendy A. Wells, Brian Pogue
Hyperspectral dark-field microscopy (HSDFM) and data cube analysis algorithms demonstrate successful classification of various tissue types, including the detection of carcinoma regions in human post-lumpectomy breast tissues excised during breast

Certification of Standard Reference Material(R) 2196 Axial Resolution Standard for Optical Medical Imaging

February 7, 2023
Author(s)
Jeeseong C. Hwang, Kimberly Briggman, Nikki Rentz, Hyun-Jin Kim, David W. Allen, Lee J. Richter, Sowon Yoon, John Lu
Medical imaging devices and systems must be calibrated to ensure uniformity and reliability of test results. A standard reference material (SRM) or "phantom", as it is known in the medical imaging community, is used to replicate fundamental characteristics

Polydimethylsiloxane tissue-mimicking phantoms with tunable optical properties

July 1, 2022
Author(s)
Aaron Goldfain, Paul Lemaillet, David W. Allen, Kimberly Briggman, Jeeseong C. Hwang
We report on techniques to manufacture and characterize solid tissue-mimicking phantoms of polydimethylsiloxane (PDMS) polymers. Tunability of the absorption (a()) and reduced scattering spectra (s'()) in the wavelength range of 500 nm to 850 nm is

Spatial frequency domain Mueller matrix imaging

April 22, 2021
Author(s)
Joseph Chue-Sang, Aaron Goldfain, Jeeseong C. Hwang, Thomas A. Germer
We combine Mueller matrix polarimetry (MMP) with spatial frequency domain imaging (SFDI) to create a technique that is sensitive to near-surface material anisotropy. We demonstrate this imaging modality with scattering and absorbing phantoms and with a

Transparent High-Frequency Ultrasonic Transducer for Photoacoustic Microscopy Application

September 1, 2020
Author(s)
Jeeseong Hwang, Christopher S. Yung, Ruimin Chen, Yun He, Junhui Shi, Lihong Wang, Qifa Zhou
We report the development of an optically transparent high-frequency ultrasonic transducer using lithium niobate single-crystal and indium-tin-oxide electrodes with up to 90 % optical transmission in the visible to near infrared spectrum. The center

Dual-comb photoacoustic spectroscopy

June 19, 2020
Author(s)
Jacob T. Friedlein, Esther Baumann, Kimberly Briggman, Gabriel M. Colacion, Fabrizio R. Giorgetta, Daniel I. Herman, Nathan R. Newbury, Jeeseong Hwang, Ian R. Coddington, Kevin C. Cossel, Gabriel Ycas, Christopher Yung, Eli V. Hoenig, Edgar F. Perez, Aaron Goldfain
Spectrally-resolved photoacoustic imaging is a promising technique for label-free imaging in optically scattering materials. However, this technique often requires acquisition of a separate image at each wavelength of interest. This reduces imaging speeds

High-resolution, high-contrast mid-infrared imaging of fresh biological samples with ultraviolet-localized photoacoustic microscopy

May 13, 2019
Author(s)
Junhui Shi, Terrence Wong, Yun He, Lei Li, Ruiying Zhang, Christopher Yung, Jeeseong C. Hwang, Lihong Wang
Mid-infrared (MIR) microscopy provides rich chemical and structural information about biological samples, without staining. Conventionally, the long MIR wavelength severely limits the lateral resolution owing to optical diffraction; moreover, the strong

High-speed alignment optimization of digital optical phase conjugation systems based on autocovariance analysis in conjunction with orthonormal rectangular polynomials

August 28, 2018
Author(s)
Ashton S. Hemphill, Yuecheng Shen, Jeeseong C. Hwang, Lihong V. Wang
Digital optical phase conjugation (DOPC) enables many optical applications by permitting focusing of light through scattering media. However, DOPC systems require precise alignment of all optical components, particularly of the spatial light modulator (SLM

Correction of an adding-doubling inversion algorithm for the measurement of the optical parameters of turbid media

January 1, 2018
Author(s)
Paul Lemaillet, Catherine C. Cooksey, Jeeseong Hwang, Heidrun Wabnitz, Dirk Grosenick, Lin Yang, David W. Allen
We present broadband measurements of the optical properties of tissue-mimicking solid phantoms using a single integrating sphere to measure the hemispherical reflectance and transmittance under a direct illumination at the normal incident angle. These

Broadband spectral measurements of diffuse optical properties by an integrating sphere instrument at the National Institute of Standards and Technology

March 30, 2017
Author(s)
Paul Lemaillet, Jeeseong Hwang, Heidrun Wabnitz, Dirk Grosenick, Lin Yang, David W. Allen
Diffuse materials that approximate the optical properties of human tissue are commonly used as phantoms. In order to use the phantoms in a manner that provides consistent results relative to independent measurements, the optical properties need to be tied

Label-free hyperspectral dark-field microscopy towards quantitative scatter imaging

March 27, 2017
Author(s)
Philip Cheney, David McClatchy III, Stephen Kanick, Paul Lemaillet, David W. Allen, Daniel Samarov, Brian Pogue, Jeeseong C. Hwang
A hyperspectral dark-field microscopy technique has been developed for imaging spatially distributed diffuse reflectance spectra from light-scattering samples. In this report, quantitative scatter spectroscopy was demonstrated with a uniform scattering

Polydimethylsiloxane tissue-mimicking phantoms for quantitative optical medical imaging standards

March 24, 2017
Author(s)
Jeeseong Hwang, Hyun J. Kim, Paul Lemaillet, Dirk Grosenick, Thomas Gladytz, David McClatchy III, Kimberly A. Briggman, Brian Pogue
We report on a procedure to build and characterize solid tissue-mimicking phantoms of polydimethylsiloxane (PDMS) polymers. Controlled inclusion of light scattering titanium dioxide (TiO2) nanoparticles enables the creation of phantoms having tunable light

Wide-field quantitative imaging of tissue microstructure using high-frequency structured light

June 9, 2016
Author(s)
David McClatchy III, Elizabeth Rizzo, wendy wells, Jeeseong C. Hwang, keith paulson, Brian Pogue, Stephen Kanick
Sub-diffusive structured light imaging has been shown to accurately and quantitatively map the reduced scattering coefficient and the phase function backscatter parameter in a wide-field geometry. This study shows the first the experimental imaging of

National Institute of Standards and Technology measurement service of the optical properties of biomedical phantoms: Current status

March 24, 2016
Author(s)
Paul Lemaillet, Catherine C. Cooksey, Zachary H. Levine, Adam L. Pintar, Jeeseong Hwang, David W. Allen
The National Institute for Standards and Technology (NIST) has maintained scales of reflectance and transmittance over several decades. Those scales are primarily intended for the regular transmittance, mirrors, and solid surface scattering diffusers. The

Double-integrating-sphere system at the National Institute of Standards and Technology in support of measurement standards for the determination of optical properties of tissue-mimicking phantoms

October 27, 2015
Author(s)
Paul Lemaillet, Jeeseong C. Hwang, David W. Allen
There is a need for a common reference point that will allow for the comparison of the optical properties of tissue mimicking phantoms. This paper provides a brief review of the methods that have been used to measure tissue mimicking phantoms. The review

Digital Phantoms Generated by Spectral and Spatial Light Modulators

October 21, 2015
Author(s)
Bonghwan Chon, Fuyuki Tokumasu, Ji Y. Lee, David W. Allen, Joseph P. Rice, Jeeseong Hwang
A hyperspectral image projector (HIP) based on liquid crystal on silicon (LCoS) spatial light modulators (SLMs) is explained and demonstrated to generate 3D spectral data cubes. The HIP- constructed data cubes are 3D images of the spatial distribution of
Was this page helpful?