Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications

NIST Authors in Bold

Displaying 376 - 400 of 672

Numerical methods every atomic and molecular theorist should know

December 16, 2019
Author(s)
Barry I. Schneider, Heman Gharibnejad
This review article discusses a few theoretical and numerical approaches that have been successfully used to treat electron scattering and photoionization of atoms and molecules and the interaction of those systems with intense, short-pulse electromagnetic

Spectrum of Ni V in the Vacuum Ultraviolet

November 27, 2019
Author(s)
Jacob W. Ward, A J. Raassen, Alexander Kramida, Gillian Nave
This work presents 97 remeasured Fe V wavelengths (1200 Å to 1600 Å) and 123 remeasured Ni V wavelengths (1200 Å to 1400 Å) with uncertainties of approximately 2 mÅ. An additional 67 remeasured Fe V wavelengths and 72 remeasured Ni V wavelengths with

Quantum interference between photons from an atomic ensemble and a remote atomic ion

November 18, 2019
Author(s)
A. Craddock, J. Hannegan, D. Ornelas-Huerta, J. Siverns, A. Hachtel, E. Goldschmidt, James V. Porto, Q. Quraishi, S. Rolston
Many remote-entanglement protocols rely on the generation and interference of photons produced by nodes within a quantum network. Quantum networks based on heterogeneous nodes provide a versatile platform by utilizing the complimentary strengths of the

Advanced technologies for quantum photonic devices based on epitaxial quantum dots

October 11, 2019
Author(s)
Tian M. Zhao, Yan Chen, Yu Ying, Li Qing, Marcelo I. Davanco, Jin Liu
Photonic quantum technology is creating breakthroughs in both fundamental quantum science and applications such as quantum communication, computation and sensing. Regarded as artificial atoms due to the discrete energy levels they support, semiconductor

Study of the neutron spin-orbit interaction in silicon

September 29, 2019
Author(s)
Thomas R. Gentile, Michael G. Huber, Muhammad D. Arif, Daniel Hussey, David Jacobson, Donald D. Koetke, Murray Peshkin, Thomas Dombeck, Paul Nord, Dimitry A. Pushin, Robert Smither
The neutron spin-orbit interaction, which results from the interaction of a moving neutron's magnetic dipole moment (MDM) with the atomic electric fields, induces a small rotation of the neutron's spin in one Bragg reflection. In our experiment neutrons

Exceeding the Sauter-Schwinger limit of pair production with a quantum gas

September 21, 2019
Author(s)
Alina M. Pineiro Escalera, Mingwu Lu, Dina Genkina, Ian Spielman
We quantum-simulated particle-antiparticle pair production with a bosonic quantum gas in an optical lattice by emulating the requisite 1d Dirac equation and uniform electric field. We emulated field strengths far in excess of Sauter-Schwinger's limit for

Indistinguishable photons from deterministically integrated single quantum dots in heterogeneous GaAs/Si3N4 quantum photonic circuits

September 15, 2019
Author(s)
Peter Schnauber, Anshuman Singh, Johannes Schall, Suk I. Park, Jin Dong Song, Sven Rodt, Kartik Srinivasan, Stephan Reitzenstein, Marcelo I. Davanco
With in-situ electron beam lithography we deterministically integrate single InAs quantum dots into heterogeneous GaAs/Si3N4 waveguide circuits. Through microphotoluminescence spectroscopy, we show on-chip quantum dot emission of single, postselected

Developing Next-generation Brain Sensing Technologies - A Review

July 22, 2019
Author(s)
Jacob T. Robinson, Eric Pohlmeyer, Malte C. Gather, Caleb Kemere, John Kitching, George G. Malliaras, Adam Marblestone, Kenneth L. Shepard, Thomas Stieglitz, Chong Xie
Advances in sensing technology raise the possibility of creating neural interfaces that can more effectively restore or repair neural function and reveal fundamental properties of neural information processing. To realize the potential of these

Progress Towards a Gas-Flow Standard using Microwave and Acoustic Resonances

July 15, 2019
Author(s)
Jodie Gail Pope, Keith A. Gillis, Michael R. Moldover, Eric Harman, James Mehl
We describe our progress in the development of a novel gas flow standard using the acoustic and microwave resonances of a 1.85 m3, nearly-spherical, steel vessel at pressures up to 7 MPa. For flow calibrations using pressure and acoustic frequency

Cowan code: 50 years of growing impact on atomic physics

July 2, 2019
Author(s)
Alexander Kramida
The famous Cowan's book "The Theory of Atomic Structure and Spectra" published in 1981 and his suite of computer codes based on it continue to be highly influential in atomic physics and many other researchareas. As of September 2018, there are more than

Microcontroller based scanning transfer cavity lock with environmental compensation

April 22, 2019
Author(s)
Sarthak Subhankar, Alessandro Restelli, Yang Wang, Steve Rolston, James V. Porto
We present a compact, cost-effective, and all-digital implementation of a scanning transfer cavity lock (STCL) for long term laser frequency stabilization. An interrupt-based, event-centric state machine is employed to realize the STCL, with the capability

Nanoscale Atomic Density Microscopy

April 1, 2019
Author(s)
Sarthak Subhankar, Yang Wang, Tsz-Chun Tsui, Steven Rolston, James V. Porto
Quantum simulations with ultracold atoms typically create atomic wavefunctions with structure at optical length scales, where direct imaging suffers from the diffraction limit. In analogy to advances in optical microscopy for biological applications, we

Data for secondary electron production from ion precipitation at Jupiter II: Simultaneous and non-simultaneous target and projectile processes in collisions of Oq+ + H2 (q=0-8)

March 15, 2019
Author(s)
David R. Schultz, Heman Gharibnejad, Thomas Cravens, Stephen Houston
To improve the physical completeness of the data previously calculated [Schultz et al. ADNDT 113, 1 (2016)] to enable modeling of the effects of secondary electrons produced by energetic ion precipitation at Jupiter, we extend the treatment to include

Modeling near ground-state cooling of two-dimensional ion crystals in a Penning trap using electromagnetically induced transparency

February 7, 2019
Author(s)
Athreya Shankar, Elena Jordan, Kevin Gilmore, Arghavan Safavi-Naini, John J. Bollinger, Murray Holland
Penning traps, with their ability to control planar crystals of tens to hundreds of ions, are versatile quantum simulators. Thermal occupations of the motional drumhead modes, transverse to the plane of the ion crystal, degrade the quality of quantum

An energy-resolved atomic scanning probe

November 21, 2018
Author(s)
Daniel S. Gruss, Chih-Chun Chien, Julio T. Barreiro, Massimiliano Di Ventra, Michael P. Zwolak
The density of states is a concept that is ubiquitous in classical and quantum physics, since it quantifies the energy distribution of states available in a system. Spectroscopic means allow its measurement over the entirety of a system's energy spectrum

Observation of bound state self-interaction in a nano-eV atom collider

November 20, 2018
Author(s)
R Thomas, M. Chilcott, A. Deb, Eite Tiesinga, N. Kjaergaard
Quantum mechanical scattering resonances for colliding particles occur when a continuum scattering state couples to a discrete bound state between them. The coupling also causes the bound state to interact with itself via the continuum and leads to a shift

Periodic Table of the Elements

November 3, 2018
Author(s)
Karen Olsen
The periodic table contains NIST's latest critically evaluated data for atomic properties of the elements.
Displaying 376 - 400 of 672
Was this page helpful?