Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications

NIST Authors in Bold

Displaying 1 - 25 of 612

Symmetry-dependent ultrafast manipulation of nanoscale magnetic domains

December 23, 2022
Author(s)
Nanna Hagstrom, Rahul Jangid, F. N. U. Meera, Diego Turenne, Jeffrey Brock, Erik Lamb, Boyan Stoychev, Justine Schlappa, Natalia Gerasimova, Benjamin Van Kuiken, Rafael Gort, Laurent Mercadier, Loic Le Guyader, Andrey Samartsev, Andreas Scherz, Giuseppe Mercurio, Hermann Durr, Alexander Reid, Monika Arora, Hans Nembach, Justin Shaw, Emmanuelle Jal, Eric Fullerton, Mark Keller, Roopali Kukreja, Stefano Bonetti, Thomas J. Silva, Ezio Iacocca
Symmetry is a powerful concept in physics, but its applicability to far-from-equilibrium states is still being understood. Recent attention has focused on how far-from-equilibrium states lead to spontaneous symmetry breaking. Conversely, ultrafast optical

Intelligent-Fabric Computing: Challenges and Opportunities

November 8, 2022
Author(s)
Min Chen, Jia Liu, Pan Li, Hamid Gharavi, Yixue Hao, Jingyu Ouyang, Long Hu, Chong Hou, Iztok Humar, Lei Wei, Guang-Zhong Yang, Guangming Tao
With the advent of the Internet of Everything, people can easily interact with their environments immersively. The idea of pervasive computing is becoming a reality, but due to the inconvenience of carrying silicon-based entities and a lack of fine-grained

Demonstration of Superconducting Optoelectronic Single-Photon Synapses

October 6, 2022
Author(s)
Saeed Khan, Bryce Primavera, Jeff Chiles, Adam McCaughan, Sonia Buckley, Alexander Tait, Adriana Lita, John Biesecker, Anna Fox, David Olaya, Richard Mirin, Sae Woo Nam, Jeff Shainline
Superconducting optoelectronic hardware is being explored as a path towards artificial spiking neural networks with unprecedented scales of complexity and computational ability. Such hardware combines integrated-photonic components for few-photon, light

Towards the Physical Reliability of 3D-Integrated Systems: Broadband Dielectric Spectroscopic (BDS) Studies of Material Evolution and Reliability in Integrated Systems

September 30, 2022
Author(s)
Papa Amoah, Joseph J. Kopanski, Yaw S. Obeng, Christopher Sunday, Chukwudi Okoro, Lin You, Dmirty Veksler
In this paper, we present an overview of our current research focus in developing non-destructive metrology for monitoring reliability issues in 3D-integrated electronic systems. We introduce a suite of non-destructive metrologies that can serve as early

Degradation of CVD-Grown MoS2 Subjected to DC Electrical Stress

September 16, 2022
Author(s)
Elisabeth Mansfield, David Goggin, Jason Killgore, Taylor Aubry
Devices containing transition metal dichalcogenides are being investigated for next generation electronics. Understanding material properties under typical use conditions is important for longevity and effectiveness of these devices. In this study, CVD

How to Report and Benchmark Emerging Field-Effect Transistors

July 29, 2022
Author(s)
Zhihui Cheng, Chin-Sheng Pan, Peiqi Wang, Yanqing Wu, Davood Shahrjerdi, Iuliana Radu, Max Lemme, Lian-Mao Peng, Xiangfeng Duan, Zhihong Chen, Joerg Appenzeller, Steven Koester, Eric Pop, Aaron Franklin, Curt A. Richter
Emerging low-dimensional nanomaterials have been studied for decades in device applications as field-effect transistors (FETs). However, properly reporting and comparing device performance has been challenging due to the involvement and interlinking of

Implementation of a Binary Neural Network on a Passive Array of Magnetic Tunnel Junctions

July 18, 2022
Author(s)
Jonathan Goodwill, Nitin Prasad, Brian Hoskins, Matthew Daniels, Advait Madhavan, Lei Wan, Tiffany Santos, Michael Tran, Jordan Katine, Patrick Braganca, Mark Stiles, Jabez J. McClelland
The increasing scale of neural networks and their growing application space have produced a demand for more energy and memory efficient artificial-intelligence-specific hardware. Avenues to mitigate the main issue, the von Neumann bottleneck, include in

Gate resistance thermometry: An electrical thermal characterization technique

July 15, 2022
Author(s)
Georges Pavlidis, Brian Foley, Samuel Graham
Gate Resistance Thermometry (GRT) is a potential reliable technique to determine the average temperature of the gate metal in GaN transistors. In contrast to other electrical techniques that average the temperature across different areas of the active

The Expanding Role of National Metrology Institutes in the Quantum Era

July 12, 2022
Author(s)
Alexander Tzalenchuk, Nicolas Spethmann, Tim Prior, Jay H. Hendricks, Yijie Pan, Vladimir Bubanja, Guilherme Temporao, Dai-Hyuk Yu, Damir Ilic, Barbara L. Goldstein
Now that all base units are defined in terms of fundamental constants and can thus — at least in principle — be realized anytime and anywhere, rather than through a measurement chain leading back to unique physical artefacts, who holds the traceability

A 110 GHz Comb Generator in a 250 nm InP HBT Technology

April 18, 2022
Author(s)
Jerome Cheron, Dylan Williams, Richard Chamberlin, Miguel Urteaga, Paul D. Hale, Rob Jones, Ari Feldman
We report a monolithic microwave integrated-circuit (MMIC) comb generator capable of producing a repetitive narrow pulse (7.1 ps pulse duration) with sharp edges (4.2 ps falling time). The circuit is designed in a 250 nm Indium Phosphide (InP)

2022 Spring/Summer ARFTG Microwave Measurement Conference

April 4, 2022
Author(s)
Jon Martens, Andrej Rumiantsev, Marco De Spirito, Jeffrey Jargon
The Automatic RF Techniques Group (ARFTG) is a technical organization interested in all aspects of RF and microwave test and measurement. Originally created as a users' forum focused on the calibration and automation of early vector network analyzers

Influence of Dimensionality on the Charge Density Wave Phase of 2H-TaSe2

March 23, 2022
Author(s)
Sugata Chowdhury, Albert Rigosi, Heather Hill, David B. Newell, Angela R. Hight Walker, Francesca Tavazza, Andrew Briggs
Metallic transition metal dichalcogenides like tantalum diselenide (TaSe2) exhibit exciting behaviors at low temperatures including the emergence of charge density wave (CDW) states. In this work, density functional theory (DFT) is used to classify the

Are 2D Interfaces Really Flat?

March 15, 2022
Author(s)
Zhihui Cheng, Huairuo Zhang, Son Le, Hattan Abuzaid, Guoqing Li, Yifei Yu, Albert Davydov, Linyou Cao, Aaron Franklin, Curt A. Richter
Two-dimensional (2D) materials are amenable to external mechanical deformation and thus forming bubbles and wrinkles. However, little is known about the dynamics of 2D interfaces, especially their flatness under different conditions. Here we use cross

Empirical Differences in LTE Open- and Closed-Loop Power Control

February 10, 2022
Author(s)
Azizollah Kord
We present the empirical Physical Uplink Shared Channel radiated power of a User Equipment in a commercial Long-Term Evolution Frequency-Division Duplex system in open- and closed-Loop power control. We present new insights, targeted on power control, from

Intermediate spin pair relaxation through modulation of isotropic hyperfine interaction in frequency-swept spin-dependent recombination in 4H-SiC

February 7, 2022
Author(s)
James Ashton, Brian Manning, Stephen Moxim, Fedor Sharov, Patrick Lenahan, Jason Ryan
Electrically detected magnetic resonance (EDMR) measurements have been extended to sub-mT measurements through utilization of frequency sweeping of the oscillating magnetic field, where conventional electron paramagnetic resonance-based measurements

High-Gain 500-GHz InP HBT Power Amplifiers

January 31, 2022
Author(s)
Jerome Cheron, Rob Jones, Richard Chamberlin, Dylan Williams, Miguel Urteaga, Kassi Smith, Nick Jungwirth, Bryan Bosworth, Chris Long, Nate Orloff, Peter Aaen, Ari Feldman
We report two terahertz monolithic integrated circuit (TMIC) amplifiers operating at 500 GHz. The 6-stage single-ended power amplifiers use Teledyne's 130 nm indium-phosphide double heterojunction bipolar transistors in a common-base configuration. The

Circular Economy in the High-Tech World Workshop Report

December 14, 2021
Author(s)
Martin L. Green, Kelsea Schumacher
The National Institute of Standards and Technology (NIST) held a Technical Workshop on January 27 and 28, 2021 to assess the state and challenges of a Circular Economy (CE) in the High-Tech World. Scientists, researchers, and program managers in the CE

Model for the Bipolar Amplification Effect

December 10, 2021
Author(s)
James Ashton, Stephen Moxim, Ashton Purcell, Patrick Lenahan, Jason Ryan
We present a model based on Fitzgerald-Grove surface recombination for the bipolar amplification effect (BAE) measurement, which is widely utilized in electrically detected magnetic resonance (EDMR) to measure reliability and performance-limiting interface
Displaying 1 - 25 of 612