NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Optical frequency division & pulse synchronization using a photonic-crystal microcomb injected chip-scale mode-locked laser
Published
Author(s)
Chinmay Shirpurkar, Jizhao Zang, Ricardo Bustos-Ramirez, David Carlson, Travis Briles, Lawrence R. Trask, Srinivas V. Pericherla, Di Huang, Ashish Bhardwaj, Gloria E. Hoefler, Scott Papp, Peter J. Delfyett
Abstract
A mode-locked laser photonic integrated circuit with a repetition rate of 10 GHz is optically synchronized to a tantalabased photonic crystal resonator comb with a repetition rate of 200 GHz. The synchronization is achieved through regenerative harmonic injection locking using a coupled optoelectronic oscillator loop resulting in an optical frequency division factor of 20. The repetition rate of the photonic crystal resonator comb is stabilized and locked through electro-optic division. This stability is transferred to the mode-locked laser where we measure a fractional frequency instability of 8×10−11 at an averaging time of 10s for the repetition rate signal of the mode-locked laser. Furthermore, we also measure the near carrier phase noise of the pulse repetition rate and estimate the integrated rms timing jitter of the pulses to be 6 ps.
Shirpurkar, C.
, Zang, J.
, Bustos-Ramirez, R.
, Carlson, D.
, Briles, T.
, R. Trask, L.
, V. Pericherla, S.
, Huang, D.
, Bhardwaj, A.
, E. Hoefler, G.
, Papp, S.
and J. Delfyett, P.
(2024),
Optical frequency division & pulse synchronization using a photonic-crystal microcomb injected chip-scale mode-locked laser, Journal of Lightwave Technology, [online], https://doi.org/10.1109/JLT.2023.3304605, https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=936228
(Accessed October 8, 2025)