An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Elizabeth A. Goldschmidt, Sergey V. Polyakov, Sarah E. Beavan, Jingyun Fan, Alan L. Migdall
We use spectral hole burning in Pr3+:Y2SiO5 in order to prepare spectral distributions of ions optimized for using such a material as a quantum memory for photon states. Our spectral hole-burning implementations include preparing an ensemble of ions to be
Michael S. Allman, Fabio Altomare, Jed D. Whittaker, Katarina Cicak, Dale Li, Adam J. Sirois, Joshua Strong, John D. Teufel, Raymond W. Simmonds
We demonstrate coherent tunable coupling between a superconducting phase qubit and a lumpedelement resonator. The coupling strength is mediated by a flux-biased rf SQUID operated in the nonhysteretic regime. By tuning the applied flux bias to the rf SQUID
Michael D. Niemack, Kent D. Irwin, Joern Beyer, Hsiao-Mei Cho, William B. Doriese, Gene C. Hilton, Carl D. Reintsema, Daniel R. Schmidt, Joel N. Ullom, Leila R. Vale
Multiplexed superconducting quantum interference device (SQUID) readout systems are a critical technology for measuring large arrays of superconducting transition-edge sensor (TES) detectors. Current successful SQUID multiplexing architectures are
David P. Pappas, Jeffrey S. Kline, Willim R. Kelley, Zachary Dutton, Thomas A. Ohki, john Schlafer, Bashkar Mookerji
The phenomenon of coherent population trapping (CPT) of an atom (or solid state artificial atom ), and the associated effect of electromagnetically induced transparency (EIT), are clear demonstrations of quantum interference due to coherence in multilevel
We developed a spectrometer for signals at single photon levels in the near infrared (NIR) region based on a tunable up-conversion detector. This detector uses a 5-cm periodically poled lithium niobate (PPLN) waveguide to convert NIR photons to a shorter
Quantum information systems are commonly operated in conventional communication bands (1310 and 1550 nm) over an optical fiber to take advantage of low transmission loss. However, the detection and spectral measurement of single photons in these
David I. Olaya, Paul D. Dresselhaus, Samuel P. Benz
We present a technology based on Nb/NbxSi1-x/Nb junctions, with barriers near the metal-insulator transition, for applications in superconducting electronics (SCE) as an alternative to Nb/AlOx/Nb tunnel junctions. Josephson junctions with co-sputtered
Mary A. Rowe, G. M. Salley, E. J. Gansen, Shelley M. Etzel, Sae Woo Nam, Richard P. Mirin
We detail a mathematical framework for photoconductive gain applied to the detection of single photons. Because photoconductive gain is derived from the ability to measure current change for an extended period, its magnitude is reduced as detection speed
Because of the fundamental importance of Bell's theorem, a loophole-free demonstration of a violation of local realism is highly desirable. Here, we study violations of local realism involving photon pairs. We quantify the experimental evidence against
Jason Amini, Hermann Uys, Janus H. Wesenberg, Signe Seidelin, Joseph W. Britton, John J. Bollinger, Dietrich G. Leibfried, Christian Ospelkaus, Aaron Vandevender, David J. Wineland
The basic components for a quantum information processor using trapped ions have been demonstrated in a number of experiments. To perform complex algorithms that are not tractable with classical computers, these components need to be integrated and scaled
Aaron Pearlman, Alexander E. Ling, Elizabeth A. Goldschmidt, Jingyun Fan, Christoph Wildfeuer, Alan L. Migdall
We experimentally map the transverse profile of diffraction-limited beams using photon number resolving detectors. We observe strong compression of diffracted beam profiles for high detected photon number. This effect leads to higher contrast than a
We propose a new method to narrow the linewidth of entangled photons from spontaneous parametric down conversion incorporated with an internal Bragg grating. We study and show that it is a promising way to generate narrow-line entangled photons.
Katarina Cicak, Dale Li, Joshua Strong, Michael S. Allman, Fabio Altomare, Adam J. Sirois, Jed D. Whittaker, Raymond W. Simmonds
We have produced high quality resonant microwave circuits through developing a vacuum-gap technology for fabricating lumped-element capacitive and inductive components. We use micromachining to eliminate amorphous dielectric materials leaving vacuum in
This report summarizes the research and measurement science carried out during 2008-2009 in the NIST Physics Laboratory. The Laboratory supports U.S. industry, government, and the scientific community by providing measurement services and research for
This report summarizes the technical work of the Mathematical and Computational Sciences Division (MCSD) of NIST s Information Technology Laboratory. Part I (Overview) provides a high-level overview of the Division s activities, including highlights of
Chin-Wen Chou, David Hume, J.C. Koelemeij, David J. Wineland, Till P. Rosenband
We have constructed an optical clock with a fractional frequency inaccuracy of 8.6e-18, based on quantum logic spectroscopy of an Al+ ion. A simultaneously trapped Mg+ ion serves to sympathetically laser-cool the Al+ ion and detect its quantum state. The
Zachary H. Levine, Jingyun Fan, Jun Chen, Alexander E. Ling, Alan L. Migdall
WWe analyze the generation of single spatial mode, spectrally uncorrelated photon pairs via type II spontaneous parametric downconversion in a Potassium Titanyl Phosphate (KTP) waveguide using real experimental parameters. We show that this source can be
C. R. Fitzpatrick, C. M. Natarajan, R. E. Warburton, G. S. Buller, Burm Baek, Sae Woo Nam, Shigehito Miki, Z. Wang, Masahide Sasaki, A. G. Sinclair, Robert Hadfield
Single-photon sources and detectors are key enabling technologies for photonics in quantum information science and technology (QIST). QIST applications place high-level demands on the performance of sources and detectors; it is therefore essential that
Natalia B. Rutter, Sergey V. Polyakov, Paul D. Lett, Alan L. Migdall
The transit times of photons traveling through opaque barriers such as dielectric stacks exhibit the Hartman saturation effect. This saturation of the transit time is quite sensitive to the addition of a single dielectric layers, even onto an already thick
Imagine a computer that can exploit quantum mechanics to solve previously intractable problems in physics, mathematics and cryptography. Such a quantum computer would revolutionize computing technology while teaching us about fundamental physics and ways
Micropillar devices have shown promise as single photon sources for applications in quantum key distribution as well as single photon metrology and fundamental science. For higher temperature operation (77K), a high quality (Q) factor cavity and a small
Martin J. Stevens, Burm Baek, Eric Dauler, Andrew J. Kerman, Richard J. Molnar, Scott A. Hamilton, Karl Berggren, Richard P. Mirin, Sae Woo Nam
We demonstrate a new approach to measuring high-order temporal coherences that uses a four-element superconducting nanowire single-photon detector. The four independent, interleaved single-photonsensitive elements parse a single spatial mode of an optical
We consider a superconducting phase qubit consisting of a monocrystalline sapphire Josephson junction with symmetry axis perpendicular to the junction interfaces. Via the London gauge we present a theoretical model of Fe3+ magnetic impurities within the
William B. Doriese, Gene C. Hilton, Kent D. Irwin, Francis J. Schima, Joel N. Ullom, Joseph S. Adams, Caroline A. Kilbourne
In typical algorithms for optimally filtering transition-edge-sensor-microcalorimeter pulses, the average value of a filtered pulse is set to zero. The achieved energy resolution of the detector then depends strongly on the chosen length of the pulse