NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Direct Observation of Coherent Population Trapping in a Superconducting Artificial Atom
Published
Author(s)
David P. Pappas, Jeffrey S. Kline, Willim R. Kelley, Zachary Dutton, Thomas A. Ohki, john Schlafer, Bashkar Mookerji
Abstract
The phenomenon of coherent population trapping (CPT) of an atom (or solid state artificial atom ), and the associated effect of electromagnetically induced transparency (EIT), are clear demonstrations of quantum interference due to coherence in multilevel quantum systems. We report observation of CPT in a superconducting phase qubit by simultaneously driving two coherent transitions in a Λ-type configuration, utilizing the three lowest lying levels of a local minimum of a phase qubit. We observe 60( 7)% suppression of the excited state population under conditions of CPT resonance. We present data and matching theoretical simulations showing the development of CPT in time. Finally, we used the observed time dependence of the excited state population to characterize quantum dephasing times of the system.
Pappas, D.
, Kline, J.
, Kelley, W.
, Dutton, Z.
, Ohki, T.
, Schlafer, J.
and Mookerji, B.
(2010),
Direct Observation of Coherent Population Trapping in a Superconducting Artificial Atom, Physical Review B, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=904703
(Accessed October 14, 2025)