Skip to main content

NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.

Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.

U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications

Search Title, Abstract, Conference, Citation, Keyword or Author
  • Published Date
Displaying 76 - 100 of 846

Dark solitons in Bose-Einstein condensates: a dataset for many-body physics research

December 21, 2022
Author(s)
Amilson R. Fritsch, Shangjie Guo, Sophia Koh, Ian Spielman, Justyna Zwolak
We establish a dataset of over 1.6 x 10^4 experimental images of Bose–Einstein condensates containing solitonic excitations to enable machine learning (ML) for many-body physics research. About 33 % of this dataset has manually assigned and carefully

Spatial frequency domain Mueller matrix imaging

December 14, 2022
Author(s)
Joseph Chue-Sang, Maritoni Litorja, Aaron Goldfain, Thomas A. Germer
Significance: Mueller matrix polarimetry (MMP) and spatial frequency domain imaging (SFDI) are wide-field optical imaging modalities that differentiate tissue primarily by structure alignment and photon transport coefficient, respectively. Because these

Ultra-low loss quantum photonic circuits integrated with single quantum emitters

December 12, 2022
Author(s)
Ashish Chanana, Hugo Larocque, Renan Moreira, Jacques Carolan, Biswarup Guha, Emerson Goncalves De Melo, Vikas Anant, Jin Dong Song, Dirk Englund, Daniel Blumenthal, Marcelo Davanco, Kartik Srinivasan
Photon-based photonic quantum information systems require both scalable ultra-low loss photonic circuits and high-flux sources of single-photons. Direct integration of these sources and circuits is critical to realizing quantum systems that are scalable

Physics-based Models for photonic thermometers

December 1, 2022
Author(s)
Zeeshan Ahmed
Resistance thermometry, meticulously developed over the last century, provides a time-tested method for taking temperature measurements. However, fundamental limits to resistance-based approaches along with a desire to reduce the cost of sensor ownership

Quadrature Squeezing And Temperature Estimation From The Fock Distribution

November 3, 2022
Author(s)
Italo Pereira Bezerra, Hilma Vasconcelos, Scott Glancy
We present a method to estimate the amount of squeezing and temperature of a single-mode Gaussian harmonic oscillator state based on the weighted least squares estimator applied to measured Fock state populations. Squeezing and temperature, or equivalently

The time-programmable frequency comb and its use in quantum-limited ranging

October 27, 2022
Author(s)
Emily Caldwell, Laura Sinclair, Nathan R. Newbury, Jean-Daniel Deschenes
Two decades after its invention, the frequency comb is an unparalleled ruler for frequency, time, and distance metrology due to the rigid spacing of its optical output. Here, in contrast, we demonstrate a programable frequency comb by combining self

Hyperspectral photon-counting optical time domain reflectometry

October 4, 2022
Author(s)
Anouar Rahmouni, Samprity Saha, Oliver T. Slattery, Thomas Gerrits
Optical time-domain reflectometry (OTDR) is one of the most used techniques for nondestructive characterization of optical fiber links. Although conventional OTDR exhibits good performance in classical network applications, photoncounting OTDR (ν-OTDR)

Towards entangled photon pair generation from SiC-based microring resonator

October 4, 2022
Author(s)
Anouar Rahmouni, Lijun Ma, Xiao Tang, Thomas Gerrits, Lutong Cai, Qing Li, Oliver T. Slattery
Entangled photon sources are fundamental building blocks for quantum communication and quantum networks. Recently, silicon carbide emerged as a promising material for integrated quantum devices since it is CMOS compatible with favorable mechanical

Extremely broadband calibrated bolometers and microbolometer arrays for Earth radiation budget measurements

September 30, 2022
Author(s)
Michelle Stephens, Chris Yung, Nathan Tomlin, Dave Harber, Cameron Straatsma, Atasi Dan, Erica Freire Antunes, Peter Pilewskie, Odele Coddington, John H. Lehman
The Earth radiation budget, a 40-year data record of the balance between solar radiation reaching the Earth and the amount absorbed, reflected, and emitted from the Earth, is a key climate record for determining whether the Earth is warming or cooling. The

Tightly Confined Surface Acoustic Waves as Microwave-to-Optical Transduction Platforms in the Quantum Regime

September 26, 2022
Author(s)
Ryan DeCrescent, Zixuan Wang, Poolad Imany, Robert Boutelle, Corey McDonald, Travis Autry, John Teufel, Sae Woo Nam, Richard Mirin
Surface acoustic waves (SAWs) coupled to quantum dots (QDs), trapped atoms and ions, and point defects have been proposed as quantum transduction platforms, yet the requisite coupling rates and cavity lifetimes have not been experimentally established

3D Imaging from Passive Scattered Light using Plenoptic Information

July 15, 2022
Author(s)
James Leger, Connor Hashemi, Jarvis Haupt, Di Lin, Tianqi Luo, Abhinav Sambasivan, Takahiro Sasaki, Joseph Talgader, Gary Meyer, Michael Tetzlaff, Erich N. Grossman
We use plenoptic measurements of visible, infrared, and THz radiation to locate and image objects that are hidden from direct view by detecting their passive radiation scattered from rough surfaces.

Ultra-low Power Dual Frequency Comb Ranging

June 30, 2022
Author(s)
Emily Caldwell, Laura Sinclair, Jean-Daniel Deschenes, Nathan R. Newbury
Dual comb ranging is a well-established method of laser-based ranging that exploits frequency combs to provide absolute, high-precision measurements. It suffers, however, from a significant power penalty when compared with conventional FMCW LIDAR. Here, we

A continuum of bright and dark pulse states in a photonic-crystal resonator

June 6, 2022
Author(s)
Su-Peng Yu, Erwan Lucas, Jizhao Zang, Scott Papp
Nonlinearity is a powerful determinant of physical systems. Controlling nonlinearity leads to interesting states of matter and new applications. In optics, diverse families of continuous and discrete states arise from balance of nonlinearity and group

Intrinsically accurate sensing with an optomechanical accelerometer

May 18, 2022
Author(s)
Benjamin Reschovsky, David Long, Feng Zhou, Yiliang Bao, Richard A. Allen, Jason J. Gorman, Thomas W. LeBrun
We demonstrate a microfabricated optomechanical accelerometer that is capable of percent-level accuracy without external calibration. To achieve this capability, we use a mechanical model of the device behavior that can be characterized by the thermal

Time Programmable Frequency Comb

May 15, 2022
Author(s)
Emily Caldwell, Laura Sinclair, Nathan R. Newbury, Jean-Daniel Deschenes
We demonstrate a programmable optical frequency comb that emits coherent pulses with user-specified time and phase at sub-10 attosecond accuracy while maintaining the underlying referenced stability characteristic of combs.

A self-validated detector for characterization of quantum network components

May 7, 2022
Author(s)
Anouar Rahmouni, Thomas Gerrits, Alan Migdall, Oliver T. Slattery, Ping-Shine Shaw, Joseph P. Rice
We are developing a nearly polarization-independent, low-cost optical trap detector between 1000 nm and 1550 nm for optical power measurements. A NIST-traceable optical power calibration of this trap detector showed a promising result.

White Rabbit-assisted quantum network node synchronization with quantum channel coexistence

May 7, 2022
Author(s)
Thomas Gerrits, Ivan Burenkov, Ya-Shian Li-Baboud, Anouar Rahmouni, DJ Anand, FNU Hala, Oliver T. Slattery, Abdella Battou, Sergey Polyakov
We show that the Ethernet-based time transfer protocol 'White Rabbit' can synchronize two distant quantum-networked nodes to within 4 ps, enabling HOM interference at >90 % visibility using 17.6 ps FWHM single-photons coexisting with White Rabbit.
Was this page helpful?