An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Single epitaxial quantum dots (QDs) are a leading technology for quantum light generation, particularly when they are embedded in photonic geometries that enhance their emission into a targeted and confined mode. However, coupling this mode into a
The Kerr effect in atomic vapor may be regarded as the power saturation of the susceptibility. Hence the saturable Kerr effect is intimately tied to the standard Kerr effect. Here, we calculate the saturable Kerr effect without parameters using a two-level
Haotian Cheng, Naijun Jin, Zhaowei Dai, Chao Xiang, Joel Guo, Yishu Zhou, Scott Diddams, John Bowers, Owen Miller, Peter Rakich
The unique benefits of Fabry–Pérot resonators as frequency-stable reference cavities and as an efficient interface between atoms and photons make them an indispensable resource for emerging photonic technologies. To bring these performance benefits to next
Joseph Fowler, Zachary H. Levine, Paul Szypryt, Daniel Swetz
Tomographic imaging of integrated circuits at scales smaller than 1 micrometer is a challenging x-ray measurement. We describe a research instrument based upon superconducting x-ray microcalorimeters, which help to discriminate among materials in a sample
Frequency engineering of whispering-gallery resonances is essential in microcavity nonlinear optics. The key is to control the frequencies of the cavity modes involved in the underlying nonlinear optical process to satisfy its energy conservation criterion
Electrical signals derived from optical sources have achieved record-low levels of phase noise, and have demonstrated the highest frequency stability yet achieved in the microwave domain. Attaining such ultrastable phase and frequency performance requires
Dahyeon Lee, Takuma Nakamura, Andrew Metcalf, Nathan Flowers-Jacobs, Anna Fox, Paul Dresselhaus, Franklyn Quinlan
We demonstrate a sub-GHz resolution, fully programmable Fourier-domain pulse shaper capable of generating arbitrary optical pulse patterns. This high resolution allows line-by-line pulse shaping of a 1 GHz comb with a span as large as 1 THz, which
Feng Zhou, Yiliang Bao, Jason Gorman, John R. Lawall
Photonic crystal (PhC) membranes patterned with sub-wavelength periods offer a unique combination of high reflectivity, low mass, and high mechanical quality factor. Using a PhC membrane as one mirror of a Fabry-Perot cavity, a finesse as high as $F=35\
This is the report of a hybrid working group meeting held on April 25, 2023, at the National Institute of Standards and Technology (NIST) in Boulder, CO. The working group was focused on extreme ultraviolet lithography (EUVL) research, development, and
Nik Prajapati, Aly Artusio-Glimpse, Matt Simons, Samuel Berweger, Drew Rotunno, Maitreyi Jayaseelan, Kaleb Campbell, Christopher L. Holloway
Rydberg atoms show great promise for use as self-calibrated electric field sensors for a broad range of frequencies. Their response is traceable to the international system of units making them a valuable tool for a variety of applications including
Akira Kyle, Curtis Rau, William Warfield, Alexander Kwiatkowski, John Teufel, Konrad Lehnert, Tasshi Dennis
Doubly parametric quantum transducers (DPTs), such as electro-optomechanical devices, show promise as quantum interconnects between the optical and microwave domains, thereby enabling long-distance quantum networks between superconducting qubit systems
Emily Caldwell, Jean-Daniel Deschenes, Jennifer Ellis, William C. Swann, Benjamin Stuhl, Hugo Bergeron, Nathan R. Newbury, Laura Sinclair
The combination of optical time transfer and optical clocks opens up the possibility of large-scale free-space networks that connect both ground-based optical clocks and future space-based optical clocks. Such networks promise better tests of general
Joshua Bienfang, Edwin J. Heilweil, Anand Sampath, Gregory Garrett, Jonathan Shuster, Jeremy Smith, Michael Derenge, Daniel Habersat, Reza Gandhi, Sergei Dolinsky, Enrico Bellotti, michael wrabeck
Ultraviolet single-photon avalanche detectors (UV-SPAD) that are low cost, size, weight, and power as well as resilient to shock, high temperatures and stray magnetic fields have a number of applications. SiC is attractive for UV SPADs as it is inherently
Christophe Couteau, Stefanie Barz, Thomas Durt, Thomas Gerrits, Jan Huwer, Robert Prevedel, John Rarity, Gregor Weihs
With the development of photonic quantum technologies, single photons have become key for various applications including quantum communication and quantum computing, discussed in an accompanying Review. Here we overview the applications of single photons
Anouar Rahmouni, Paulina Kuo, Yicheng Shi, Jabir Marakkarakath Vadakkepurayil, Nijil Lal Cheriya Koyyottummal, Ivan Burenkov, Ya-Shian Li-Baboud, Mheni Merzouki, Abdella Battou, Sergey Polyakov, Oliver T. Slattery, Thomas Gerrits
We successfully demonstrated polarization entanglement distribution and classical time synchronization using a high-accuracy precision time protocol between two quantum nodes located 250 meters apart using a single fiber simultaneously carrying both
Wayne McKenzie, Ya-Shian Li-Baboud, Mark Morris, Gerald Baumgartner, Anouar Rahmouni, Paulina Kuo, Oliver T. Slattery, Bruce Crabill, Mheni Merzouki, Abdella Battou, Thomas Gerrits
We show sub-200 ps synchronization between quantum networks nodes that are separated by two 64 km deployed fiber links, providing a 128 km link architecture. The architecture employs one grandmaster and two boundary White Rabbit system clocks and shows
We experimentally investigate using backward-wave spontaneous parametric downconversion for frequency translation, where spectral characteristics of the pump wave are transferred to the signal wave.
Benedikt Hampel, Daniel Slichter, Dietrich Leibfried, Richard Mirin, Sae Woo Nam, Varun Verma
State readout of trapped-ion qubits with trap-integrated detectors can address important challenges for scalable quantum computing, but the strong radio frequency (rf) electric fields used for trapping can impact detector performance. Here, we report on
Chad Cruz, John C. Stephenson, Sebastian Engmann, Emily Bittle, Jared Wahlstrand
We describe an experimental scheme for sensitive pump-probe spectral interferometry measurements at long time delays using two Michelson interferometers. It has practical advantages over the Sagnac interferometer method typically used when long time delays
Daniel Herman, Jean-Daniel Deschenes, Henry Timmers, Ian Coddington, Nathan R. Newbury
Opto-optical loss modulation (OOM) for stabilization of the carrier-envelope offset (CEO) frequency of a femtosecond fiber laser is performed using a collinear geometry. Amplitude-modulated 1064 nm light is fiber coupled into the optical resonator of an
Chad Ropp, Wenqi Zhu, Alexander Yulaev, Daron Westly, Gregory Simelgor, Akash Rakholia, William Lunden, Dan Sheredy, Martin Boyd, Scott Papp, Amit Agrawal, Vladimir Aksyuk
The commercialization of atomic technologies requires replacing laboratory-scale laser setups with compact and manufacturable optical platforms. Complex arrangements of free-space beams can be generated on chip through a combination of integrated photonics
Ivan Burenkov, Alexandra Semionova, FNU Hala, Thomas Gerrits, Anouar Rahmouni, DJ Anand, Ya-Shian Li-Baboud, Oliver T. Slattery, Abdella Battou, Sergey Polyakov
We investigate the coexistence of clock synchronization protocols with quantum signals in a common single-mode optical fiber. By measuring optical noise between 1500 nm to 1620 nm we demonstrate a potential for up to 100 quantum DWDM channels coexisting