An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Alexana Roshko, Matthew D. Brubaker, Paul T. Blanchard, Todd E. Harvey, Kristine A. Bertness
Selective area growth (SAG) of GaN nanowires and nanowalls on Si(111) substrates with AlN and GaN buffer layers was studied. For N-polar samples filling of SAG features increased with decreasing lattice mismatch between the SAG and the buffer. Threading
Matthew D. Brubaker, Kristen L. Genter, Bryan T. Spann, Alexana Roshko, Paul T. Blanchard, Todd E. Harvey, Kristine A. Bertness
GaN nanowire LEDs with radial p-i-n junctions were grown by molecular beam epitaxy using N- polar selective area growth on Si(111) substrates. The N-polar selective area growth process facilitated the growth of isolated and high-aspect-ratio n-type NW
Hind El Hadri, Julien Gigault, Jiaojie Tan, Vincent A. Hackley
Applications of asymmetrical flow field-flow fractionation (AF4) continue to expand rapidly in the fields of nanotechnology and biotechnology. In particular, AF4 has proven valuable for the separation and analysis of particles, biomolecular species (e.g
Kamal Choudhary, Brian L. DeCost, Francesca M. Tavazza
We present a complete set of chemo-structural descriptors to significantly extend the applicability of machine learning (ML) in material screening and mapping the energy landscape for multicomponent systems. These descriptors allow differentiating between
Mattias Kruskopf, Jiuning Hu, Bi Y. Wu, Yanfei Yang, Hsin Y. Lee, Albert F. Rigosi, David B. Newell, Randolph E. Elmquist
We report the growth of large-area monolayer graphene on the centimeter scale using an optimized growth process allowing for reproducibility and morphology improvements. Magneto-transport measurements on graphene quantum Hall effect devices demonstrate the
Jiuning Hu, Mattias Kruskopf, Yanfei Yang, Bi Y. Wu, Jifa Tian, Alireza R. Panna, Albert F. Rigosi, Hsin Y. Lee, George R. Jones Jr., Marlin E. Kraft, Dean G. Jarrett, Kenji Watanabe, Takashi Taniguchi, Randolph E. Elmquist, David B. Newell
We report the fabrication and measurement of top gated epitaxial graphene p-n junctions where exfoliated hexgonal boron nitride (hBN) is used as the gate dielectric. The four terminal longitudinal resistance across a single junction is well quantized at R_
Jan Ilavsky, Fan Zhang, Ross N. Andrews, Ivan Kuzmenko, Pete R. Jemian, Lyle E. Levine, Andrew J. Allen
Following many years of evolutionary development, first at the National Synchrotron Light Source, Brookhaven National Laboratory, and then at the Advanced Photon Source (APS), Argonne National Laboratory, the APS ultra-small-angle X-ray scattering (USAXS)
Miran Mozetic, Alenka Vesel, Gregor Primc, J. Bauer, A. Eder, G. H. S. Schmid, David Ruzic, Zeeshan Ahmed, Daniel Barker, Kevin O. Douglass, Stephen Eckel, James A. Fedchak, Jay H. Hendricks, Nikolai Klimov, Jacob Edmond Ricker, Julia Scherschligt, Jack A. Stone Jr., Gregory F. Strouse, I. Capan, M Buljan, S. Milosevic, C Teichert, S R. Cohen, A G. Silva, M Lehocky, P Humpolicek, C Rodriguez, J Hernandez-Montelongo, E Punzon-Quijorna, D Mercier, M Manso-Silvan, G Ceccone, A Galtayries, K Stana-Kleinschek, I Petrov, J E. Greene, J Avila, C Y. Chen, B Caja, H Yi, A Boury, S Lorcy, M C. Asensio, T Gans, D O?Connell, F Reniers, A Vincze, M Anderle
Nanometer-sized structures, surfaces and sub-surface phenomena have played an enormous role in science and technological applications and represent a driving-force of current interdisciplinary science. Recent developments include the atomic-scale
Silver nanomaterials (AgNMs) have been increasingly used in consumer products for their antibacterial properties. Textiles, including wound dressings, are just one of the many products which take advantage of AgNM's antimicrobial properties. To better
Nanomaterials have been increasingly used in consumer products and silver nanomaterials (AgNMs) especially have been used for their antimicrobial properties. As use of AgNMs in consumer products continues to increase, a corresponding increase in silver's
Jason K. Streit, Jochen I. Campo, Chad R. Snyder, Ming Zheng, Jeffrey R. Simpson, Angela R. Hight Walker, Jeffrey Fagan
Encapsulation of linear alkane molecules in the endohedral volumes of small diameter single- wall carbon nanotubes (SWCNTs) is shown to induce diameter dependent strain on the hexagonal lattice of carbon atoms composing the tubular structure. For the
We demonstrate a pressure sensing approach based on the resonant operation of a single crystal Si cantilever positioned near a flexible, pressurized membrane. The membrane deflection perturbs the electrostatic force acting on the cantilever and
Shannon Hanna, Antonio Montoro Bustos, Alexander W. Peterson, Vytas Reipa, Leona D. Scanlan, Sanem Hosbas Coskun, Tae Joon Cho, Monique Johnson, Vincent A. Hackley, Bryant C. Nelson, Michael R. Winchester, John T. Elliott, Elijah Petersen
The increased use and incorporation of engineered nanoparticles (ENPs) in consumer products requires a robust assessment of their potential environmental implications. However, a lack of standardized methods for nanotoxicity testing has yielded results
Gordon A. MacDonald, Frank W. DelRio, Jason Killgore
Piezoelectric force microscopy and related bias induced strain sensing measurements provide unprecedented characterization of material-functionality at the nanoscale. However, the techniques are subject to considerable undesirable artifacts that conflate
Jason P. Killgore, Christopher C. Glover, Ryan Tung
This work presents data confirming the existence of a scan speed related phenomenon in contact mode atomic force microscopy. Specifically, contact resonance spectroscopy is used to interrogate this phenomenon. A monotonic decrease in the recorded contact
Vojtech Svatos, Imrich Gablech, Robert Ilic, Jan Pekarek, Pavel Neuzil
Carbon nanotubes (CNTs) have near unity infrared (IR) absorption efficiency, making them extremely attractive in IR imaging devices. Since CNT growth occurs at elevated temperatures, integration of CNTs with IR imaging devices is challenging and has not
Kavita M. Jeerage, Stephanie L. Candelaria, Samuel M. Stavis
Electrocatalytic nanoparticles, such as nickel/iron oxides for oxygen evolution (OER) in alkaline electrolytes, require rapid synthesis and measurement for practical use. To address this issue, we investigated a novel process of adding Ni(II) species to Fe
David Goodwin, Adeyemi Adeyele, Li Piin Sung, Kay Ho, Robert Burgess, Elijah Petersen
An increase in production of commercial products containing graphene-family nanomaterials (GFNs) has led to concern over their release into the environment. The fate and potential ecotoxicological effects of GFNs in the environment are currently unclear
Alexander Yulaev, Vladimir P. Oleshko, Paul M. Haney, Jialin Liu, Yue Qi, Talin Alec, Leite Marina, Andrei A. Kolmakov
Li metal is the preferred anode material for all-solid-state Li batteries due to its high theoretical capacity and low voltage vs. standard hydrogen electrode. However, stable plating and stripping of Li metal in contact with a solid electrolyte at high
Michael L. Schneider, Christine A. Donnelly, Stephen E. Russek, Burm Baek, Matthew R. Pufall, Peter F. Hopkins, Paul D. Dresselhaus, Samuel P. Benz, William H. Rippard
Neuromorphic computing is a promising avenue to dramatically improve the efficiency of certain computational tasks, such as perception and decision making. Neuromorphic systems are currently being developed for critical applications ranging from self