NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Robert Jones, Jerome Cheron, Benjamin Jamroz, Dylan Williams, Ari Feldman, Peter Aaen, Christian Long, Nathan Orloff
In this article we extract the capacitance of shunt and series metal-insulator-metal capacitors from on-wafer S-parameter measurements in the WR1.0 waveguide band. We verify consistency of the measured devices in two different state-of-the-art terahertz
Peter Bradley, Elizabeth Sorenson, Damian Lauria, Li-Anne Liew
Micro Electromechanical Systems (MEMS) switches offer many advantages over conventional larger switches. One potential application we are exploring is the use of commercial radio frequency (RF) MEMS switches for quantum computing applications. However, it
This paper describes the implementation of a system for the generation and measurement of DC power and energy for voltages with magnitudes up to 800 V DC and currents up to 400 A DC. Power generation is based on the "phantom" power approach, where the
Jerome Cheron, Rob Jones, Dylan Williams, Miguel Urteaga, Bryan Bosworth, Nick Jungwirth, Jeffrey Jargon, Ben Jamroz, Chris Long, Nate Orloff, Ari Feldman, Peter Aaen
We report a novel design approach of on-wafer multiline thru-reflect-line (mTRL) calibration kit fabricated on a commercial semiconductor-based transistor process that we validate from 0.1 GHz to 1.1 THz. The on-wafer calibration standards are designed
Nehika Mathur, Thomas Maani, Chuanbing Rong, John Sutherland
The push to decarbonize has spurred the demand for clean energy technologies such as electric vehicles (EVs) and wind turbines (WTs). These technologies rely on rare earth permanent magnets (REPMs), namely Neodymium-Iron-Boron (NdFeB) magnets that in turn
Bryce Primavera, Saeed Khan, Samuel Adler, Jeff Shainline
Superconducting optoelectronic hardware is promising for large-scale neuromorphic computing. In this work, analog circuits combining Josephson junctions and superconducting single-photon detectors are fabricated and shown to exhibit a variety of
Angela Hight Walker, Thuc Mai, Maria Munoz, Curt Richter
We spatially dope heterostructures composed of 2-dimensional (2D) materials to modify devices in-operando for custom functionalities, such as lateral p-n-p junctions. After optically photodoping an hBN/Graphene/hBN heterostructure, we measure the detailed
Chinmay Shirpurkar, Jizhao Zang, Ricardo Bustos-Ramirez, David Carlson, Travis Briles, Lawrence R. Trask, Srinivas V. Pericherla, Di Huang, Ashish Bhardwaj, Gloria E. Hoefler, Scott Papp, Peter J. Delfyett
A mode-locked laser photonic integrated circuit with a repetition rate of 10 GHz is optically synchronized to a tantalabased photonic crystal resonator comb with a repetition rate of 200 GHz. The synchronization is achieved through regenerative harmonic
Cardiovascular disease (CVD) is the leading cause of death worldwide, casting a substantial economic footprint and burdening the global healthcare system. Historically, pre-clinical CVD modeling and therapeutic screening has been performed using animal
Marla L. Dowell, Hannah Brown, Gretchen Greene, Paul D. Hale, Brian Hoskins, Sarah Hughes, Bob R. Keller, R Joseph Kline, June W. Lau, Jeff Shainline
The CHIPS and Science Act of 2022 called for NIST to "carry out a microelectronics research program to enable advances and breakthroughs....that will accelerate the underlying R&D for metrology of next-generation microelectronics and ensure the
James Spencer Lundh, Georges Pavlidis, Kohei Sasaki, Andrea Centrone, Joseph Spencer, Hannah Masten, Alan G Jacobs, Keita Konishi, Akito Kuramata, Karl Hobart, Travis J. Anderson, Marko Tadjer
We present the long-term timing accuracy of STL receivers by validating their performance against UTC(NIST), the timing reference at the National Institute of Standards and Technology (NIST), for a duration of 100 days. STL is a mature timing and location
This paper presents the use of a binary search algorithm to obtain the simulated response of a superconducting Josephson junction-based sampler. In the absence of noise, this simple approach is superior to mimicking the experimental approach of using an
Thomas P. Moffat, David Raciti, Angela R. Hight Walker, Eric J. Cockayne, John Vinson, Kathleen Schwarz
Shell-isolated Nanoparticle Enhance Raman Spectroscopy (SHINERS) and Density Functional Theory (DFT) are used to probe Cl- adsorption and the order-disorder phase transition associated with the c(2×2) Cl- adlayer on Cu(100) in acid media. A two-component
Anhang Li, Jeongsup Lee, Prashansa Mukim, Brian Hoskins, Pragya Shrestha, David Wentzloff, David Blaauw, Dennis Sylvester, Mehdi Saligane
This paper presents a fully integrated recursive successive-approximation switched capacitor (RSC) DC-DC converter implemented using an automatic cell-based layout generation in 12 nm FinFET technology. A novel design methodology is demonstrated based on
In this article, we present a four-channel direct digital synthesis (DDS) design that operates with a common clock ranging from 500 MHz to 24 GHz and generates output frequencies up to 1.75 GHz. A key feature of this board is its custom field-programmable
Elvin Beach, Kurt D. Benkstein, Krenar Shqau, Christopher Montgomery, Patricia Morris, Stephen Semancik
Microhotplates produced by micromachining processes provide a robust substrate for miniaturized solid-state gas sensors; however, it can be challenging to locally deposit solution-suspended nanomaterials for sensing directly onto these small (≈ 100 µm), 3
Elisabeth Mansfield, Bryan Barnes, R Joseph Kline, Andras E. Vladar, Yaw S. Obeng, Albert Davydov
The Metrology Chapter identifies emerging measurement challenges from devices, systems, and integration of new materials in the semiconductor industry and describes research and development pathways for meeting them. This includes but not limited to
Rob Jones, Jerome Cheron, Bryan Bosworth, Ben Jamroz, Dylan Williams, Miguel Urteaga, Ari Feldman, Peter Aaen
In this paper, we investigate the effect of two calibration errors, probe placement and capacitance per unit length, on transistor characterization from 220 GHz to 325 GHz on both a microstrip and an inverted coplanar waveguide with a via stitched ground
After a five-year renovation of the National Institute of Standards and Technology (NIST) Boulder, CO, antenna measurement facility, the Antenna On-Axis Gain and Polarization Measurements Service SKU63100S was reinstated with the Bureau International des
Jerome Cheron, Rob Jones, Dylan Williams, Peter Aaen
We present a new millimeter-wave electrical comb generator with frequency-adjustable tone spacing and a tunable RF center frequency. We use an ultrawideband mixer based on a Gilbert cell topology to upconvert the spectrum of a series of repetitive pulses
Luckshitha Suriyasena Liyanage, Connor Smith, Jacob Pawlik, Sarah Evans, Angela Stelson, Chris Long, Nate Orloff, David Arnold, Jim Booth
Flexible and stretchable materials have attracted significant interest for applications in wearable electronics and bioengineering fields. Recent developments also incorporate embedded microwave circuits, components, and systems with engineered flexible
Ashley Russell, Kerrianne Buchanan, David Griffith, Heather Evans, Dimitrios Meritis, Lisa Ng, Anna Sberegaeva, Michelle Stephens
The 2023 National Institute of Standards and Technology Environmental Scan provides an analysis of key external factors that could impact NIST and the fulfillment of its mission in coming years. The analyses were conducted through three separate lenses