Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Projects/Programs

Displaying 126 - 150 of 164

Particles, Tubes, and Colloids

Ongoing
Description A highlight of the PTC project is our success in purification of well-defined SWCNT populations using liquid phase separation methods. Although we use multiple techniques and methods, ion exchange chromatography, rate-zonal and isopycnic ultracentrifugation, size exclusion chromatography

Personal Body Armor

Completed
To quantify the impact of mechanical degradation on ballistic fibers, NIST developed a novel device for controlled folding of yarns and woven fabrics. In addition, we developed test protocols that employ single fibers to assess the effect of folding using a recently developed modified single fiber

Physical Infrastructure: Connections

Completed
The NIST Physical Infrastructure Program will provide the critical measurement science needed to assess the condition of aging physical infrastructure and guide cost-effective strategies for its maintenance, repair, and replacement. Infrastructure management challenges in the U.S. have received

Pipeline Safety

Ongoing
The U.S. operates more than 2.5M miles of natural gas, petroleum and hazardous liquid pipelines, crossing all 50 states and operated by more than 3,000 companies. Fluid hydrocarbon fossil fuels remain the world leading source of energy. The safest and most reliable means of transporting these fuels

Polymer Formulations

Completed
Bringing new and optimized formulated products to market requires measurements that will allow rapid assessment of the structure and properties of multicomponent mixtures over large parameter spaces. To this end, we are developing microfluidic "lab on a chip" technologies that enable researchers to

Polymer Mechanics

Ongoing
The mechanical behavior for polymers is very sensitive to the deformation rate of the impact test. Thus we are developing and applying several novel measurements that can study the mechanical response of the polymer at different deformation rates and at different material length scales. High-rate

Polymer Membranes

Ongoing
We are developing and applying the following advanced tools to measure the structure, dynamics, and performance of polymer-based membranes and sorbents: Vibrational Spectroscopy We have developed a custom-built tandem quartz crystal microbalance (QCM), which measures total mass uptake of adsorbed

Polymers for Next-Generation Lithography

Completed
We work closely with the semiconductor industry to develop and apply measurements with high-spatial and chemically-specific resolution to elucidate the critical materials properties and process kinetics at nanometer scales that are needed to advance next-generation photolithography, including both

Protein Preservation

Completed
This project is an integral part of a cooperative effort – led by NIST, and partially funded by NIH/ NIBIB – which includes the University of Wisconsin, the University of Colorado, and the University of Connecticut. We use the following approach to develop measurement solutions for biopharmaceutical

Quantum Conductance

Ongoing
The quantum Hall effect (QHE), and devices that exhibit it, will continue to serve as the foundation of the ohm while also expanding its territory into other SI derived units. The world adopted the quantum SI in 2019, and it remains essential that the global metrology community pushes forth and

Raman Metrology and Instrumentation

Ongoing
Raman spectroscopy/microscopy is a powerful optical technique for rapid, non-destructive, label-free characterization of materials. It works under ambient conditions, often without requirement of any sample preparation. Applications span microelectronics, pharmaceutical, security and fundamental

Renewable Polymers

Completed
In this project, use innovative measurements to optimize existing materials synthesis and discover new routes to polymers from renewable feedstocks by providing characterization methods that can describe the mechanisms and of enzymatic catalysis of polymers from renewable feedstocks and synthetic

Resonating Platforms for Microbial, Environmental, and Materials Sensing

Ongoing
The high sensitivity of resonating piezoelectric crystals to surface perturbations has led to quartz crystal microbalances (QCMs) being widely used to measure changes in mass of thin films and adhered nanoparticles or cells. This project proceeds beyond this traditional sensing approach with quartz

Scientific Workflow

Ongoing
Digitally capturing the "scientific workflow" will be a key component to modernizing scientific data management. Defined in this context, a scientific workflow is the encapsulation of all processes and accompanying relevant data necessary to reproduce and validate an experiment. Thus, a workflow

AI self-quality assurance using learning curves in feedback loops

Ongoing
One application of artificial intelligence (AI) in materials is the acceleration of materials innovation, which is the mission of the Materials Genome Initiative. However, to decrease the cost and time-to-market, we must continuously assess the quality of models with new facts. AI quality assurance

Semiconductor Nanowire Metrology: Electronics, Photonics, and Sensors

Completed
One of the key issues hampering progress in semiconductor nanotechnology is the absence of standardized nanostructures. We address this need through the controlled fabrication and assembly of semiconductor nanowire test structures with well-defined properties. To achieve this, we have manufactured

Standards

Ongoing
Standards for Optical Based Standoff Detection NIST is researching methods for creating explosive threat materials standards relevant to optical detection technologies (e.g. that result in samples with particle morphologies similar to those found in explosive threat devices). This includes both

Standards Development to Ensure Reliable Breath Analysis in the Field

Ongoing
Numerous volatile organic compounds (VOCs) have been identified in human breath. These compounds can be produced by the body or by organisms in the body (e.g., bacteria or viruses) and provide a non-invasive window into human health. Inexpensive point-of-care devices are being developed to diagnose

Stochastic Network Growth Simulation for Photopolymerization

Ongoing
We have developed a computational method to simulate the complex interactions of the stochastic processes during polymerization. Specifically, the firing rates of these stochastic events are determined based on monomer information ( e.g. functionalities, rate constants, diffusivities, interaction

Strategy for extensible, evolving terminology for MGI efforts

Ongoing
Many Indo-European languages utilize a limited set of highly reused, non-synonymous, short semantically relevant words called roots that can be combined to facilitate the building of new compounded terms such as peanut butter and watch dog. This approach, which is more prominent in certain languages

Stroboscopic TEM for Ultrafast Materials Science

Completed
Our people: June Lau co-invented the stroboscopic microscope and had been with this project since inception. She is a physicist, and the PI of this project. She received 2 non-provisional patents for the design of the microscope, and one provisional patent on a specimen holder for microwave delivery

Structural Metrology of Advanced Manufacturing Processes

Ongoing
Understanding material structures in advanced manufacturing is crucial because it enables precise control over material properties, leading to improved performance, efficiency, and cost-effectiveness in production processes. However, this understanding poses many challenges, such as the

Structure-Property Relationships for High-Strength Materials

Ongoing
The body-armor community generally bases armor design on empirical models that do not directly relate molecular properties to performance. Aramid, aramid copolymers, and polyethylene fibers are highly oriented, anisotropic fibers that require specialized characterization techniques. In addition
Was this page helpful?