Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications by: Chris Long (Fed)

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 1 - 25 of 54

Electro-Optic Imaging Millimeter-Wave Propagation On-Wafer

September 27, 2023
Author(s)
Bryan Bosworth, Nick Jungwirth, Jerome Cheron, Franklyn Quinlan, Nate Orloff, Chris Long, Ari Feldman
We demonstrate an electro-optic imaging system for mmWaves propagating along a coplanar waveguide. Using dual optical frequency combs and a polarization resolved microscope, we image signals with bandwidth >100 GHz and >48 dB dynamic range.

Quantifying the Effect of Guest Binding on Host Environment

August 29, 2023
Author(s)
Angela Stelson, Zack Fishman, Jacob Pawlik, Gosia Musial, Jim Booth, Chris Long, Kathleen Schwarz, Nate Orloff, Hugh Ryan, Angela Grommet, Jonathan Nitschke, Felix Rizzuto
The environment around a host-guest complex is defined by of intermolecular interactions between solvent molecules and counter ions. These interactions govern both the solubility of these complexes and the rates of reactions confined within them11. Such

Broadband Electromagnetic Properties of Engineered Flexible Absorber Materials

August 23, 2023
Author(s)
Luckshitha Suriyasena Liyanage, Connor Smith, Jacob Pawlik, Sarah Evans, Angela Stelson, Chris Long, Nate Orloff, David Arnold, Jim Booth
Flexible and stretchable materials have attracted significant interest for applications in wearable electronics and bioengineering fields. Recent developments also incorporate embedded microwave circuits, components, and systems with engineered flexible

Measuring the permittivity tensor of anisotropic DyScO3 to 110 GHz

August 14, 2023
Author(s)
Florian Bergmann, Meagan Papac, Nick Jungwirth, Bryan Bosworth, Tomasz Karpisz, Anna Osella, Lucas Enright, Eric Marksz, Angela Stelson, Chris Long, Nate Orloff
DyScO3 (DSO) is an attractive substrate on which to grow epitaxial thin films with extraordinary materials physics. However, its highly anisotropic permittivity makes some measurements exceedingly difficult: For instance, its permittivity tensor has not

Physical Models and Dimensional Traceability of 2.4 mm Coaxial Airline Standards for Determining Systematic Uncertainties of Calibrated Scattering-Parameters

July 6, 2023
Author(s)
Jeffrey Jargon, Dylan Williams, Angela Stelson, Chris Long, Aaron Hagerstrom, John R. Stoup, Eric S. Stanfield
In this report, we document the models and dimensional traceability of our 2.4 mm coaxial airline standards for performing multiline thru-reflect-line calibrations up to 50 GHz using vector network analyzers. We identify the equations used in our models of

Electro-Optically Derived Arbitrary Millimeter-Wave Sources with 100 GHz of Bandwidth

May 20, 2022
Author(s)
Bryan Bosworth, Nick Jungwirth, Kassiopeia Smith, Jerome Cheron, Franklyn Quinlan, Madison Woodson, Jesse Morgan, Andreas Beling, Ari Feldman, Dylan Williams, Nate Orloff, Chris Long
We demonstrate fine phase and amplitude control of millimeter waves, measured on-wafer using an electro-optic frequency comb, programmable spectral filter, and a uni-traveling carrier photodiode. We then synthesize arbitrary waveforms with 100 GHz of

Quantifying Receiver Nonlinearities in VNA Measurements for the WR-15 Waveguide Band

March 15, 2022
Author(s)
Angela Stelson, Aaron Hagerstrom, Jeffrey Jargon, Chris Long
Scattering (S-) parameters are fundamental to numerous microwave quantities including antenna factors, microwave power, and phase. The uncertainty in S-parameter measurements is influenced by the test setup, including instrument noise, drift, position of

High-Gain 500-GHz InP HBT Power Amplifiers

January 31, 2022
Author(s)
Jerome Cheron, Rob Jones, Richard Chamberlin, Dylan Williams, Miguel Urteaga, Kassi Smith, Nick Jungwirth, Bryan Bosworth, Chris Long, Nate Orloff, Peter Aaen, Ari Feldman
We report two terahertz monolithic integrated circuit (TMIC) amplifiers operating at 500 GHz. The 6-stage single-ended power amplifiers use Teledyne's 130 nm indium-phosphide double heterojunction bipolar transistors in a common-base configuration. The

Updates to the traceability of mm-wave power measurements at NIST

December 17, 2021
Author(s)
Aaron Hagerstrom, Angela Stelson, Jeffrey Jargon, Chris Long
Metrological traceability helps ensure the reliability of measurements by allowing them to be compared with established international standards with well-understood uncertainties. A thorough uncertainty analysis is therefore necessary to provide traceable

Collector Series-Resistor to Stabilize a Broadband 400 GHz Common-Base Amplifier

October 14, 2021
Author(s)
Jerome Cheron, Dylan Williams, Richard Chamberlin, Miguel Urteaga, Kassi Smith, Nick Jungwirth, Bryan Bosworth, Chris Long, Nate Orloff, Ari Feldman
The indium phosphide (InP) 130 nm double-heterojunction bipolar transistor (DHBT) offers milliwatts of output power and high signal amplification in the lower end of the terahertz frequency band when the transistor is used in a common-base configuration

Electro-optically derived millimeter-wave sources with phase and amplitude control

October 12, 2021
Author(s)
Bryan Bosworth, Nick Jungwirth, Kassi Smith, Jerome Cheron, Franklyn Quinlan, Ari Feldman, Dylan Williams, Nate Orloff, Chris Long
Integrated circuits are building blocks in millimeter-wave handsets and base stations, requiring nonlinear characterization to optimize performance and energy efficiency. Today's sources use digital-to-analog converters to synthesize arbitrary electrical

Local negative permittivity and topological-phase transition in polar skyrmions

October 12, 2020
Author(s)
Sujit Das, Zijian Hong, Vladimir Stoica, Mauro A. Goncalves, Yu-Tsun Shao, Eric Parsonnet, Eric J. Marksz, Sahar Saremi, Margaret McCarter, A Reynoso, Chris Long, Aaron Hagerstrom, D Meyers, V Ravi, B Prasad, H Zhou, Z Zhang, H Wen, F Gomez-Ortiz, P Garcia-Fernandez, J Bokor, J Iniguez, J Freeland, Nate Orloff, J Junquera, Long-Qing Chen, Sayeef Salahuddin, David A. Muller, L Martin, R. Ramesh
Topological solitons such as magnetic skyrmions have drawn enormous attention as stable quasi- particle-like objects. The recent discovery of polar vortices and skyrmions in ferroelectric- oxide superlattices, exhibiting exotic physical phenomena, has

Physical Models and Dimensional Traceability of WR15 Rectangular Waveguide Standards for Determining Systematic Uncertainties of Calibrated Scattering-Parameters

August 10, 2020
Author(s)
Jeffrey A. Jargon, Dylan F. Williams, Angela C. Stelson, Christian J. Long, Aaron M. Hagerstrom, Paul D. Hale, John R. Stoup, Eric S. Stanfield, Wei Ren
In this report, we document the models and dimensional traceability of our WR15 rectangular waveguide standards for performing multiline thru-reflect-line calibrations from 50 GHz to 75 GHz using vector network analyzers. We identify the equations used in

On-Wafer Metrology of a Transmission Line Integrated Terahertz Source

May 10, 2020
Author(s)
Kassiopeia A. Smith, Bryan T. Bosworth, Nicholas R. Jungwirth, Jerome G. Cheron, Nathan D. Orloff, Christian J. Long, Dylan F. Williams, Richard A. Chamberlin, Franklyn J. Quinlan, Tara M. Fortier, Ari D. Feldman
A combination of on-wafer metrology and high-frequency network analysis was implemented to measure the response of transmission-line integrated Er-GaAs and InGaAs photomixers up to 1 THz to support the telecommunication and electronics industry.

Measurements of Nonlinear Polarization Dynamics in the Tens of Gigahertz

April 9, 2020
Author(s)
Aaron Hagerstrom, Eric J. Marksz, Xiaohang Zhang, Xifeng Lu, Chris Long, James Booth, Ichiro Takeuchi, Nate Orloff
Frequency-dependent linear permittivity measurements are commonplace in the literature, providing key insights into the structure of dielectric materials. These measurements describe a material's dynamic response to a small applied electric eld. In

Materials Characterization With Multiple Offset Reflects at Frequencies to 110 GHz

January 8, 2020
Author(s)
Nina P. Basta, Aaron Hagerstrom, Jasper A. Drisko, Jim Booth, Edward Garboczi, Chris Long, Nate Orloff
Understanding the electrical properties of materials is a necessary part of any microwave circuit design. In this article, we explore the possibility of employing multiple-offset-reflect devices for on-wafer materials characterization at frequencies up to

Targeted chemical pressure yields tuneable millimetre-wave dielectric

December 23, 2019
Author(s)
Natalie M. Dawley, Eric J. Marksz, Aaron Hagerstrom, Gerhard H. Olsen, Megan E. Holtz, Jingshu Zhang, Chris Long, Craig Fennie, David A. Muller, Darrell G. Schlom, James Booth, Nate Orloff
Tunable dielectrics are key constituents for emerging high-frequency devices in telecommunications—including tunable filters, phase shifters, and baluns—and for miniaturizing frequency-agile microwave and millimeter-wave components. Today, strained films

Optimal Series Resistors for On-Wafer Calibrations

November 8, 2019
Author(s)
Jasper A. Drisko, Richard A. Chamberlin, James C. Booth, Nathan D. Orloff, Christian J. Long
The series resistor is a common on-wafer device typically used in the series-resistor calibration and for estimating the capacitance per unit length of coplanar waveguide transmission lines. While much work has been done using series resistors, this paper

Carbon Nanotube Thin Film Patch Antennas for Wireless Communications

May 24, 2019
Author(s)
E. A. Bengio, Damir Senic, Lauren W. Taylor, Robert J. Headrick, Michael King, Peiyu Chen, Charles A. Little, John M. Ladbury, Chris Long, Christopher L. Holloway, Aydin Babakhani, James Booth, Nate Orloff
Early work on carbon nanotube (CNT) antennas indicated that their performance could not match that of metals such as copper. However, recent improvements in fluid phase CNT processing have yielded macroscopic CNT materials with better alignment and