Skip to main content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Search Publications by Joel Weber

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 1 - 15 of 15

Expanding the Capability of Microwave Multiplexed Readout for Fast Signals in Microcalorimeters

Author(s)
Kelsey M. Morgan, Daniel T. Becker, Douglas A. Bennett, Johnathon D. Gard, Jozsef Imrek, John A. Mates, Christine G. Pappas, Carl D. Reintsema, Daniel R. Schmidt, Joel N. Ullom, Joel C. Weber, Abigail L. Wessels, Daniel S. Swetz
Microwave SQUID multiplexing has become a key technology for reading out large arrays of X-ray and gamma-ray microcalorimeters with mux factors of 100 or more

Demonstration of Athena X-IFU Compatible 40-Row Time-Division-Multiplexed Readout

Author(s)
Malcolm S. Durkin, Joseph S. Adams, Simon R. Bandler, James A. Chervenak, Saptarshi Chaudhuri, Carl S. Dawson, Edward V. Denison, William B. Doriese, Shannon M. Duff, F. M. Finkbeiner, C. T. FitzGerald, Joseph W. Fowler, Johnathon D. Gard, Gene C. Hilton, Kent D. Irwin, Young I. Joe, R. L. Kelley, Caroline A. Kilbourne, A. R. Miniussi, Kelsey M. Morgan, Galen C. O'Neil, Christine G. Pappas, F. S. Porter, Carl D. Reintsema, David A. Rudman, Kazuhiro Sakai, Stephen J. Smith, Robert W. Stevens, Daniel S. Swetz, Paul Szypryt, Joel N. Ullom, Leila R. Vale, N. Wakeham, Joel C. Weber, B. A. Young
Time-division multiplexing (TDM) is the backup readout technology for the X-ray Integral Field Unit (X-IFU), a 3168-pixel X-ray transition-edge sensor (TES)

Optimization of Time-and Code-Division-Multiplexed Readout for Athena X-IFU

Author(s)
William B. Doriese, Simon R. Bandler, Saptarshi Chaudhuri, Carl S. Dawson, Edward V. Denison, Shannon M. Duff, Malcolm S. Durkin, C. T. FitzGerald, Joseph W. Fowler, Johnathon D. Gard, Gene C. Hilton, Kent D. Irwin, Young I. Joe, Kelsey M. Morgan, Galen C. O'Neil, Christine G. Pappas, Carl D. Reintsema, David A. Rudman, Stephen J. Smith, Robert W. Stevens, Daniel S. Swetz, Paul Szypryt, Joel N. Ullom, Leila R. Vale, Joel C. Weber, B. A. Young
Readout of a large, spacecraft-based array of superconducting transition-edge sensors (TESs) requires careful management of the layout area and power

Microwave Near-Field Imaging of Two-Dimensional Semiconductors

Author(s)
Samuel Berweger, Joel C. Weber, Jimmy J. Li, Jesus M. Velazquez, Adam Pieterick, Norman A. Sanford, Albert V. Davydov, Thomas M. Wallis, Pavel Kabos
Optimizing new generations of 2D devices based on van der Waals materials will require techniques capable of measuring variations in electronic properties in

GaN nanowire coated with atomic layer deposition of tungsten: a probe for near-field scanning microwave microscopy

Author(s)
Joel C. Weber, Paul T. Blanchard, Aric W. Sanders, Jonas Gertsch, Steven George, Samuel Berweger, Atif A. Imtiaz, Thomas M. Wallis, Kristine A. Bertness, Pavel Kabos, Norman A. Sanford, victor bright
We report on the fabrication of a GaN nanowire probe for near-field scanning microwave microscopy. The probe has a capacitive resolution of ~0.03 fF, surpassing

Gallium Nitride Nanowire Probe for Near-Field Scanning Microwave Microscopy

Author(s)
Joel C. Weber, Paul T. Blanchard, Aric W. Sanders, Atif A. Imtiaz, Thomas M. Wallis, Kevin J. Coakley, Kristine A. Bertness, Pavel Kabos, Norman A. Sanford, Victor M. Bright
We report on the fabrication of a GaN nanowire probe for near-field scanning microwave microscopy. A single nanowire was Pt-bonded to a commercial Si cantilever

Application of Microwave Scanning Probes to Photovoltaic Materials

Author(s)
Kristine A. Bertness, John B. Schlager, Norman A. Sanford, Atif A. Imtiaz, Thomas M. Wallis, Joel C. Weber, Pavel Kabos, Lorelle M. Mansfield
We demonstrate that near field scanning microwave microscopy (NSMM) can be used to detect photoresponse in photovoltaic materials with potential for