Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications by: Thomas Gerrits (Fed)

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 51 - 75 of 115

Coherent quantum frequency bridge: phase preserving, nearly-noiseless parametric frequency converter

May 3, 2017
Author(s)
Ivan A. Burenkov, Yu-Hsiang Cheng, Tim O. Thomay, Glenn S. Solomon, Alan L. Migdall, Thomas Gerrits, Adriana E. Lita, Sae Woo Nam, Lynden K. Shalm, Sergey V. Polyakov
We characterize an efficient and nearly-noiseless parametric frequency upconverter. The ultra- low noise regime is reached by the wide spectral separation between the input and pump frequencies and the low pump frequency relative to the input photons. The

Full statistical mode reconstruction of a light field via a photon-number resolved measurement

May 2, 2017
Author(s)
Ivan A. Burenkov, Sergey V. Polyakov, Thomas Gerrits, Timothy J. Bartley, Georg Harder, Christine Silberhorn, Ankita Sharma, Elizabeth A. Goldschmidt
We present a method to reconstruct the mode structure and optical losses of multimode conjugated optical fields using an experimentally measured joint photon-number probability distribution. We demonstrate nearly-perfect reconstruction of a multimode field

Detector-Independent Verification of Quantum Light

April 21, 2017
Author(s)
Jan Sperling, W.R. Clements, Andreas Eckstein, Meritt Moore, Jelmer Renema, Steven Kolthammer, Sae Woo Nam, Adriana Lita, Thomas Gerrits, Wolfgang Vogel, G.S. Agarwal, Ian Walmsley
We introduce a method for the verification of nonclassical light which is independent of the complex interaction between the generated light and the material of the detectors, which are in our work superconducting transition-edge sensors. This is achieved

Heralding single photons from a high-Q silicon microdisk

November 10, 2016
Author(s)
Xiyuan Lu, Steven Rogers, Thomas Gerrits, Wei Jiang, Sae Woo Nam, Qiang Lin
Integrated quantum photonics has recently attracted considerable attention due to the promise of realizing chip-scale quantum information processing with unprecedented capability and complexity. Their implementation relies essentially on a high-quality

A quantum enigma machine: Experimentally demonstrating quantum data locking

August 12, 2016
Author(s)
Daniel Lum, Michael S. Allman, Thomas Gerrits, Cosmo Lupo, Seth Lloyd, Varun Verma, Sae Woo Nam, John Howell
During the first half of the 20th century, enigma machines (i.e., pseudorandom polyalphabetic ciphers) of increasing sophistication gave better resistance against brute-force codebreaking attacks. However, the ultimate form of cryptographic security is

A significant-loophole-free test of Bell's theorem with entangled photons

December 16, 2015
Author(s)
Marissa Giustina, Marijn Versteegh, Soren Wengerowsky, Johannes Handsteiner, Armin Hochrainer, Kevin Phelan, Fabian Steinlechner, Johannes Koffler, Larsson Jan-Ake, Carlos Abellan, Waldimar Amaya, Valerio Pruneri, Morgan Mitchell, Joern Beyer, Thomas Gerrits, Adriana Lita, Krister Shalm, Sae Woo Nam, Thomas Scheidl, Rupert Ursin, Bernhard Wittmann, Anton Zeilinger
Local realism is the worldview in which physical properties of objects exist independently of measurement and where physical influences cannot travel faster than the speed of light. Bell's theorem states that this worldview is incompatible with the

A strong loophole-free test of local realism

December 16, 2015
Author(s)
Lynden K. Shalm, Evan Meyer-Scott, B. G. Christensen, Peter L. Bierhorst, Michael A. Wayne, Deny Hamel, Martin J. Stevens, Thomas Gerrits, Scott C. Glancy, Michael S. Allman, Kevin J. Coakley, Shellee D. Dyer, Adriana E. Lita, Varun B. Verma, Joshua C. Bienfang, Alan L. Migdall, Yanbao Zhang, William Farr, Francesco Marsili, Matthew D. Shaw, Jeffrey Stern, Carlos Abellan, Waldimar Amaya, Valerio Pruneri, Thomas Jennewein, Morgan Mitchell, P. G. Kwiat, Richard P. Mirin, Emanuel H. Knill, Sae Woo Nam
We present a loophole-free violation of local realism using entangled photon pairs. We ensure that all relevant events in our Bell test are spacelike separated by placing the parties far enough apart and by using fast random number generators and high

A Source for Mesoscopic Quantum Optics

October 22, 2015
Author(s)
Georg Harder, Timothy J. Bartley, Adriana Lita, Sae Woo Nam, Thomas Gerrits, Christine Silberhorn
The nature of quantum decoherence renders the observation of nonclassical features/properties in large systems increasingly difficult. Optical states are a good candidate to observe nonclassical features since 5 they are less susceptible to environmental

Tomography of photon-number resolving continuous-output detectors

October 21, 2015
Author(s)
Thomas Gerrits, Peter C. Humphreys, Benjamin Metcalf, Thomas Hiemstra, Adriana E. Lita, Sae Woo Nam, Animesh Datta, Steven Kolthammer, Ian Walmsley, Joshua Nunn
We develop a comprehensive approach to analyzing the continuous output of photon detectors. It uses principle component analysis to extract information available from such detectors, followed by a novel parameterized photon-number resolving detector

Quantum-correlated photon pairs generated in commercial 45 nm complementary metal-oxide semiconductor microelectronics

July 7, 2015
Author(s)
Cale M. Gentry, Jeff Shainline, Mark W. Wade, Martin Stevens, Shellee D. Dyer, Xiaoge Zeng, Fabio Pavanello, Thomas Gerrits, Sae Woo Nam, Richard Mirin, Milos A. Popovic
Correlated photon pairs are a fundamental component of quantum photonic systems. While pair sources have previously been integrated on silicon chips in custom facilities, these often take advantage of only a small fraction of microelectronics fabrication

Superconducting Transition Edge Sensors for Quantum Optics

June 2, 2015
Author(s)
Thomas Gerrits, Adriana E. Lita, Brice R. Calkins
High efficiency single-photon detectors allow novel measurements in quantum information processing and quantum photonic systems. The photon-number resolving transition edge sensor (TES) is known for its near-unity detection efficiency and has been used in

A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout

May 14, 2015
Author(s)
Michael S. Allman, Varun B. Verma, Martin J. Stevens, Thomas Gerrits, Robert D. Horansky, Adriana E. Lita, Francesco Marsili, A. Beyer, Matthew Shaw, D. Kumor, Richard P. Mirin, Sae Woo Nam
We demonstrate a 64-pixel free-space-coupled array of superconducting nanowire single photon detectors optimized for high detection efficiency in the near-infrared range. An integrated, readily scalable, multiplexed readout scheme is employed to reduce the

Near-infrared single-photon spectroscopy of a whispering gallery mode resonator using energy-resolving transition edge sensors

April 28, 2015
Author(s)
Thomas Gerrits, Michael Fortsch, Martin J. Stevens, Dmitry Strekalov, Gerhard Schunk, Josef Furst, Ulrich Vogl, Florian Sedlmeir, Harald G. Schwefel, Gerd Leuchs, Christoph Marquardt
We demonstrate a method to perform spectroscopy of near-infrared single photons without the need of dispersive elements. This method is based on a photon energy resolving transition edge sensor and is applied for the characterization of a widely wavelength

Highly efficient generation of single-mode photon pairs from a crystalline whispering-gallery-mode resonator source

February 11, 2015
Author(s)
Michael Fortsch, Gerhard Schunk, Josef Furst, Dmitry Strekalov, Thomas Gerrits, Martin Stevens, Florian Sedlmeir, Harald G. Schwefel, Gerd Leuchs, Christoph Marquardt
We report on the highly-efficient generation of narrow-band pair-photons in one single spatiotemporal mode using parametric down-conversion in a crystalline whispering gallery mode resonator. We developed the requirements on phase-matching conditions in

Photon-efficient high-dimensional quantum key distribution

February 4, 2015
Author(s)
Tian Zhong, Hongchao Zhou, Rob Horansky, Catherine Lee, Varun Verma, Adriana Lita, Alessandro Restelli, Joshua Bienfang, Richard Mirin, Thomas Gerrits, Sae Woo Nam, Francesco Marsili, Zhenshen Zhang, Ligong Wang, Dirk Englund, Gregory Wornell, Jeffrey Shapiro, Franco N. Wong
Quantum key distribution (QKD) is a secure communication technology whose security is guaranteed by the laws of physics. However, its widespread use has been hindered in part by low secure-key throughput due to the inherent loss and de-coherence of photons

Spectral Correlation Measurements at the Hong-Ou-Mandel Interference Dip

January 22, 2015
Author(s)
Thomas Gerrits, Francesco Marsili, Varun B. Verma, Lynden K. Shalm, Jeffrey A. Stern, Matthew Shaw, Richard P. Mirin, Sae Woo Nam
We present an efficient tool capable of measuring the spectral correlations between photons emerging from a Hong-Ou-Mandel interference configuration. We show that the Hong-Ou-Mandel interference visibility decreases as the photons’ frequency spread is

Pulse-to-pulse jitter measurement by photon correlation in high-ss lasers

January 20, 2015
Author(s)
Armand Lebreton, Abram Izo, Remy Braive, Nadia Belabas, Isabelle Sagnes, Francesco F. Marsili, Varun Verma, Sae Woo Nam, Thomas Gerrits, Isabelle Robert-Philip, Martin Stevens, Alexios Beveratos
The turn-on delay jitter in pulsed lasers in which a large fraction (β) of spontaneous emission is channeled into the lasing mode is measured by use of a photon correlation technique. This jitter is found to significantly increase with β, reaching values of

Photon-number uncertainty in a superconducting transition-edge sensor beyond resolved-photon-number determination

September 10, 2014
Author(s)
Zachary H. Levine, Boris L. Glebov, Alan L. Migdall, Thomas Gerrits, Brice R. Calkins, Adriana E. Lita, Sae Woo Nam
As part of an effort to extend fundamental single-photon measurements into the macroscopic regime, we explore how best to assign photon-number uncertainties to output waveforms of a superconducting Transition Edge Sensor (TES) and how those assignments