Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications by: Lyle E. Levine (Fed)

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 26 - 50 of 134

High-efficiency Coherence-Preserving Harmonic Rejection with Crystal Optics

September 1, 2018
Author(s)
Fan Zhang, Andrew J. Allen, Lyle E. Levine, Gabrielle G. Long, Ivan Kuzmenko, Jan Ilavsky
We report a harmonic rejection scheme based on the combination of Si (111) monochromator and Si (220) harmonic-rejection crystal optics. This approach is of importance to a wide range of X- ray applications in all three major branches of modern X-ray

Coupled experimental and computational study of residual stresses of additively manufactured Ti-6Al-4V components

July 30, 2018
Author(s)
Maria Strantza, Rishi Ganeriwala, Bjorn Clausen, Thien Q. Phan, Lyle E. Levine, D Pagan, Wayne King, Niel Hodge, Brown Donald
The production of metallic parts via laser-powder bed fusion (L-PBF) additive manufacturing is rapidly growing. To use components produced via L-PBF in safety-critical applications, a high degree of quality confidence is required. This qualification can be

Effect of Heat Treatment on the Microstructural Evolution of a Nickel-Based Superalloy Additive-Manufactured by Powder Bed Fusion Laser Sintering

June 15, 2018
Author(s)
Fan Zhang, Lyle E. Levine, Andrew J. Allen, Mark R. Stoudt, Greta Lindwall, Eric Lass, Maureen E. Williams, Yaakov S. Idell, Carelyn E. Campbell
Elemental segregation is a ubiquitous phenomenon in additive-manufactured (AM) parts due to solute rejection and redistribution during the rapid solidification process. Using electron microscopy, in situ synchrotron X-ray scattering and diffraction, and

Development of combined microstructure and structure characterization facility for in situ and operando studies at the Advanced Photon Source

June 1, 2018
Author(s)
Jan Ilavsky, Fan Zhang, Ross N. Andrews, Ivan Kuzmenko, Pete R. Jemian, Lyle E. Levine, Andrew J. Allen
Following many years of evolutionary development, first at the National Synchrotron Light Source, Brookhaven National Laboratory, and then at the Advanced Photon Source (APS), Argonne National Laboratory, the APS ultra-small-angle X-ray scattering (USAXS)

The Influence of Annealing Temperature and Time on the Formation of delta-Phase in Additively-Manufactured Inconel 625

May 10, 2018
Author(s)
Mark R. Stoudt, Eric Lass, Daniel S. Ng, Maureen E. Williams, Fan Zhang, Carelyn E. Campbell, Greta Lindwall, Lyle E. Levine
This research evaluated the kinetics of delta-phase growth in laser powder bed additively- manufactured (AM) Inconel 625 during post-build stress-relief heat treatments. The temperatures ranged between 650 °C to 1050 °C, and the times from 0.25 h to 168 h

Formation of Nb-rich droplets in laser deposited Ni-matrix microstructures

March 15, 2018
Author(s)
Supriyo Ghosh, Mark R. Stoudt, Lyle E. Levine, Jonathan E. Guyer
Ni-rich $\gamma$ cells/dendrites and Nb-rich eutectic droplets that form during laser power bed fusion (LPBF) solidification of Ni-Nb alloys are studied in the present work using numerical simulations. Finite element simulations estimate the local cooling

Single Track Melt Pool Measurements and Microstructures in Inconel 625

February 20, 2018
Author(s)
Supriyo Ghosh, Li Ma, Lyle E. Levine, Richard E. Ricker, Mark R. Stoudt, Jarred C. Heigel, Jonathan E. Guyer
We use single track laser melting experiments and simulations on Inconel 625 to estimate the dimensions and microstructures of the resulting melt pools. Our work is based on a design-of- experiments approach which uses multiple laser power and scan speed

Application of Finite Element, Phase-field, and CALPHAD-based Methods to Additive Manufacturing of Ni-based Superalloys

September 21, 2017
Author(s)
Trevor Keller, Greta Lindwall, Supriyo Ghosh, Li Ma, Brandon M. Lane, Fan Zhang, Ursula R. Kattner, Eric Lass, Yaakov S. Idell, Maureen E. Williams, Andrew J. Allen, Jonathan E. Guyer, Lyle E. Levine
Numerical simulations are used in this work to investigate aspects of microstructure and microsegregation during rapid solidification of a Ni-based superalloy in a laser powder bed fusion additive manufacturing process. Thermal modeling by finite element

Formation of the Ni3Nb delta-phase in stress-relieved Inconel 625 produced via powder-bed laser fusion additive manufacturing

August 23, 2017
Author(s)
Eric Lass, Mark R. Stoudt, Maureen E. Williams, Michael B. Katz, Thien Q. Phan, Lyle E. Levine, Thomas H. Gnaeupel-Herold
The microstructural evolution of laser powder-bed additively manufactured Inconel 625 during a post-build stress-relief anneal of 1 h at 870 °C is investigated. It is found that this industry-recommended heat treatment promotes the formation of a

New Synchrotron X-Ray Techniques for In-Situ Deformation Studies

February 19, 2017
Author(s)
Lyle E. Levine, R Thomson, Gabrielle G. Long, David R. Black
Many types of defects contribute to local and long-range stresses and strains in materials. These include vacancies, voids, prismatic loops, interstitials, inclusions, and dislocations. In most cases, dislocations play the dominant role in minimizing long

Homogenization Kinetics of a Nickel-based Superalloy Produced by Powder Bed Fusion Laser Sintering

January 26, 2017
Author(s)
Fan Zhang, Lyle E. Levine, Andrew J. Allen, Eric Lass, Sudha Cheruvathur, Mark R. Stoudt, Maureen E. Williams, Yaakov S. Idell, Carelyn E. Campbell
Additively manufactured (AM) metal components often exhibit fine dendritic microstructures and elemental segregation due to the initial rapid solidification and subsequent melting and cooling during the build process, which without homogenization would

Ni nanoindentation at the nanoscale: atomic rearrangements at the Ni-C interface

January 3, 2017
Author(s)
Francesca Tavazza, Lyle E. Levine, Bryan Kuhr, Diana Farkas
As mechanical testing proceeds towards ever-decreasing length scales, the ultimate limit is the atomic scale. Here, we investigate the atomic-scale interactions that occur at the diamond- nickel interface during the earliest stages of a Ni nanoindentation

Using Design of Experiments in Finite Element Modeling to Identify Critical Variables in Laser Powder Bed Fusion

August 11, 2016
Author(s)
Li Ma, Jeffrey T. Fong, Brandon Lane, Shawn P. Moylan, James J. Filliben, N. Alan Heckert, Lyle E. Levine
In Laser Powder Bed Fusion (L-PBF) Finite Element Analysis (FEA), input of accurate material and simulation parameters is critical for accurate predictions. It is challenging and expensive to measure and control all possible material properties and process

DFT investigation of early stages of nanoindentation of Ni

June 23, 2016
Author(s)
Francesca M. Tavazza, Lyle E. Levine
Density functional theory simulations of diamond tips indenting Ni surfaces are used to study the early stages of nanoindentation. Numerous complex interactions are observed, including Ni-surface deformation during tip approach, the attachment and

In Situ Structural Characterization of Ageing Kinetics in Aluminum Alloy 2024 across Angstrom-to-Micrometer Length Scales

June 1, 2016
Author(s)
Fan Zhang, Lyle E. Levine, Andrew J. Allen, Carelyn E. Campbell, Adam Abel Creuziger, Nataliya Kazantseva, Jan Ilavsky
The precipitate structure and precipitation kinetics in an Al-Cu-Mg alloy (AA2024) aged at 190 °C, 208 °C, and 226 °C have been studied using ex situ TEM and in situ synchrotron-based, combined ultra-small angle X-ray scattering, small angle X-ray

Synchrotron X-Ray Microbeam Diffraction Measurements of Full Elastic Long Range Internal Strain and Stress Tensors in Commercial-Purity Aluminum Processed by Multiple Passes of Equal-Channel Angular Pressing

April 23, 2016
Author(s)
Thien Q. Phan, Lyle E. Levine, I-Fang Lee, Jonathan Z. Tischler, Ruqing Xu, Yi Huang, Terrance G. Langdon, Michael E. Kassner
Synchrotron X-ray microbeam diffraction was used to measure the full elastic long range internal strain and stress tensors of low dislocation density regions within the submicrometer grain/subgrain structure of equal-channel angular pressed (ECAP) AA1050

Unexpected ?-Phase Formation in Additive Manufactured Ni-based Super Alloy

January 8, 2016
Author(s)
Yaakov S. Idell, Lyle E. Levine, Andrew J. Allen, Fan Zhang, Carelyn E. Campbell, Greg Olson, Jiadong Gong, David Snyder
An as-built and solutionized Ni-based super alloy built by additive manufacturing through a direct metal laser sintering technique is characterized to understand the microstructural differences as compared to the as-wrought alloy. The rapid solidification