Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Ni nanoindentation at the nanoscale: atomic rearrangements at the Ni-C interface



Francesca Tavazza, Lyle E. Levine, Bryan Kuhr, Diana Farkas


As mechanical testing proceeds towards ever-decreasing length scales, the ultimate limit is the atomic scale. Here, we investigate the atomic-scale interactions that occur at the diamond- nickel interface during the earliest stages of a Ni nanoindentation measurement. Using molecular dynamics with a custom-designed empirical potential, we found that, irrespectively of the Ni orientation, the same Ni-C interfacial structure always formed between the substrate and the diamond indenter. As the indenter digs deeper into the specimen, the location of the Ni-C interface changes, but its structure never does. In addition, the local formation of this structure produces longer-range disorder that may affect the local stresses and activation barriers to dislocation nucleation. As this process requires relatively large atomic displacements of the Ni atoms for some Ni orientations, we used density functional theory calculations to validate and understand the process.
Journal of Physical Chemistry


Nanoindentation, DFT, atomic rearrangement, interface


Tavazza, F. , Levine, L. , Kuhr, B. and Farkas, D. (2017), Ni nanoindentation at the nanoscale: atomic rearrangements at the Ni-C interface, Journal of Physical Chemistry, [online], (Accessed May 23, 2024)


If you have any questions about this publication or are having problems accessing it, please contact

Created January 3, 2017, Updated February 22, 2023