Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications by: George Mulholland (Assoc)

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 26 - 50 of 208

Characterizing Heat Release Rate Transients

April 26, 2012
Author(s)
Rodney A. Bryant, Erik L. Johnsson, George W. Mulholland
A series of experiments was performed to characterize the time response of a large-scale open calorimeter to square-wave pulses in terms of peak heat release rate, width of the peak, and conservation of energy. Quantitative heat release rate measurements

Amplification of the optical absorption cross section for aerosols of soot with a nonabsorbing coating from photoacoustic measurements

May 13, 2011
Author(s)
Pedro Bueno, Daniel K. Havey, George W. Mulholland, Joseph T. Hodges, Keith A. Gillis, Russell R. Dickerson, Michael R. Zachariah
A quantitative understanding of the absorption and scattering properties of mixed soot and aerosol particles is necessary for evaluating the Earth's energy balance. Uncertainty in the net radiative forcing of atmospheric aerosols is relatively large and

Verification of a Gas Mask Calibrant

February 19, 2007
Author(s)
Robert A. Fletcher, Jiann C. Yang, George W. Mulholland, R L. King, Michael R. Winchester, D Klinedinst, Jennifer R. Verkouteren, Thomas G. Cleary, David Buckingham, James J. Filliben

Measurement of 100 nm and 60 nm Particle Standards by Differential Mobility Analysis

August 1, 2006
Author(s)
George W. Mulholland, Michelle K. Donnelly, Robert C. Hagwood, S R. Kukuck, Vincent A. Hackley, D Y. Pui
The peak particle size and expanded uncertainties (95 % confidence interval) for two new particle calibration standards are measured as 101.60 nm ? 1.02 nm and 60.68 nm ? 0.59 nm. The particle samples are polystyrene spheres suspended in filtered

Report of Experimental Results for the International Fire Model Benchmarking and Validation Exercise #3.

December 1, 2005
Author(s)
Anthony P. Hamins, Alexander Maranghides, Erik L. Johnsson, Michelle K. Donnelly, Jiann C. Yang, George W. Mulholland, Robert Anleitner
The Nuclear Regulatory Commission (NRC) and the National Institute of Standards and Technology (NIST) are participating in an International Collaborative Fire Model Project (ICFMP) to assess and validate fire computer codes for nuclear power plant