Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications

NIST Authors in Bold

Displaying 1526 - 1550 of 143784

Multi-scale alignment to buried atom-scale devices using Kelvin probe force microscopy

February 24, 2024
Author(s)
Pradeep Namboodiri, Jonathan Wyrick, Gheorghe Stan, Xiqiao Wang, Fan Fei, Ranjit Kashid, Scott Schmucker, Richard Kasica, Bryan Barnes, Michael Stewart, Richard M. Silver
Fabrication of quantum devices by atomic scale patterning with a Scanning Tunneling Microscope (STM) has led to the development of single/few atom transistors, few-donor/quantum dot devices for spin manipulation and arrayed few-donor devices for analog

A branch-and-bound algorithm with growing datasets for large-scale parameter estimation

February 23, 2024
Author(s)
Susanne Sass, Alexander Mitsos, Dominik Bongartz, Ian Bell, Nikolay Nikolov, Angelos Tsoukalas
The solution of nonconvex parameter estimation problems with deterministic global optimization methods is desirable but challenging, especially if large measurement data sets are considered. We propose to exploit the structure of this class of optimization

A New Evaluation of the Decay Data for 166Ho

February 23, 2024
Author(s)
Brian E. Zimmerman
The beta emitting radionuclide 166Ho has garnered attention over the years as a potential radiolabel for therapeutic medical applications. A new decay data evaluation for 166Ho has been performed using the Decay Data Evaluation Project (DDEP) methodology

Application of the Hybrid Satellite Network Cybersecurity Framework Profile: An Example Implementation of NIST IR 8441

February 23, 2024
Author(s)
Frederick R. Byers, Dan Mamula, Karri Meldorf, Joseph Brule, Rory Jennings, John Wiltberger, Eugene Craft, John Dombrowski, O'Ryan Lattin, Abdul Noor, Matt Yetto, Aliaksander Mamonau, Oksana Slivina, Jay Sharma, Dr. Kangmin Zheng
The space sector is transitioning towards Hybrid Satellite Networks (HSN), an aggregation of independently owned and operated terminals, antennas, satellites, payloads, or other components that comprise a satellite system. The elements of an HSN may have

Raman Spectroscopy of Phonon States in NbTe4 and TaTe4 Quasi-1D van der Waals Crystals

February 23, 2024
Author(s)
Zahra Ebrahim Nataj, Fariborz Kargar, Sergiy Krylyuk, Topojit Debnath, Maedeh Taheri, Subhajit Ghosh, Huairuo Zhang, Albert Davydov, Roger Lake, Alexander Balandin
We report the results of polarization-dependent Raman spectroscopy of phonon states in single-crystalline quasi-one-dimensional NbTe4 and TaTe4 van der Waals materials. The measurements were conducted in the wide temperature range from 80 K to 560 K. Our

Programming Interfacial Porosity and Symmetry with Escherized Colloids

February 22, 2024
Author(s)
Nathan Mahynski, Vincent K. Shen
We simultaneously design the porosity and plane symmetry of self-assembling colloidal films by using isohedral tiles to determine the location and shape of enthalpically interacting surface patches on motifs being functionalized. The symmetries of both the

Ligify: Automated genome mining for ligand-inducible transcription factors

February 21, 2024
Author(s)
Simon d'Oelsnitz, Andrew Ellington, David J. Ross
Prokaryotic transcription factors can be repurposed into biosensors for the ligand-inducible control of gene expression, but the landscape of chemical ligands for which biosensors exist is extremely limited. To expand this landscape, we developed Ligify, a

Zeeman-resolved Autler-Townes splitting in Rydberg atoms with a tunable RF resonance and a single transition dipole moment

February 21, 2024
Author(s)
Noah Schlossberger, Drew Rotunno, Aly Artusio-Glimpse, Nik Prajapati, Samuel Berweger, Dangka Shylla, Matt Simons, Christopher L. Holloway
Applying a magnetic field as a method for tuning the frequency of Autler-Townes splitting for Rydberg electrometry has recently been demonstrated. In this Letter, we provide a theoretical understanding of Rydberg electromechanically-induced-transparency

Breakdown of Sound in Superfluid Helium

February 19, 2024
Author(s)
Marc Nichitiu, Craig Brown, Igor Zaliznyak
As elementary particles carry energy and momentum in the Universe, quasiparticles are the elementary carriers of energy and momentum quanta in condensed matter. And, as elementary particles, under certain conditions quasiparticles can be unstable and decay

Differential scanning calorimetry (DSC): An important tool for polymer identification and characterization of plastic marine debris

February 19, 2024
Author(s)
Jennifer Lynch, Raquel Corniuk, Kayla C. Brignac, Melissa Jung, Joelle Marchiani, Wanda Weatherford
Differential scanning calorimetry (DSC), a routine thermoanalytical method in material science, is gaining utility in plastic pollution research to improve polymer identification. We optimized a DSC method, experimentally testing pan types, temperature

Entropy Driven Incommensurate Structures in the Frustrated Kagome Staircase Co3V2O8

February 18, 2024
Author(s)
Joel Helton, Nyrissa Rogado, Robert Cava, Jeffrey Lynn
Co3V2O8 features spin-3/2 moments arrayed on a kagome staircase lattice. A spin density wave with a continuously evolving propagation vector of ⃗k = (0, δ, 0), showing both incommensurate states and multiple commensurate lock-ins, is observed at

A relativistic framework to establish Coordinate time on the Moon and Beyond

February 17, 2024
Author(s)
Neil Ashby, Bijunath Patla
The rate of clocks, according to Einstein's theory of relativity, is influenced by the gravitational potential and relative motion of the clocks. A grid of synchronized clocks that is traceable to an ideal clock at a predetermined point in space is the

Emergent Ferromagnetism in CaRuo3/CaMnO3 (111)-Oriented Superlattices

February 17, 2024
Author(s)
Margaret Kane, Churna Bhandari, Megan Holtz, Purnima Balakrishnan, Alexander Grutter, Michael R. Fitzsimmons, Chao-Yao Yang, Sashi Satpathy, Durga Paudyal, Yuri Suzuki
The boundary between CaRuO3 and CaMnO3 is an ideal test bed for emergent magnetic ground states stabilized through interfacial electron interactions. In this system, nominally antiferromagnetic and paramagnetic materials combine to yield interfacial

A Common Data Dictionary and Common Data Model for Additive Manufacturing

February 16, 2024
Author(s)
Alexander Kuan, Kareem Aggour, Shengyen Li, Yan Lu, Luke Mohr, Alex Kitt, Hunter Macdonald
Additive manufacturing (AM) leverages emerging technologies and well-adopted processes to produce near-net-shape products. The advancement of AM technology requires data management tools to collect, store and share information through the product

Zeeman effect in the weak and intermediate field regime of Kr isotopes at the linear plasma device PSI-2

February 16, 2024
Author(s)
Yuri Ralchenko, DIPTI DIPTI, Oleksandr Marchuk, Marc Sackers, Stephan Ertmer, Sebastijan Brezinsek, Arkadi Kreter
Laser absorption spectroscopy provides high-resolution spectra of atomic transitions that reveal many often inaccessible nuances. Correctly analyzing the absorption spectra is impossible without accurately capturing the line shape. We demonstrate in this

Evaluating Common-View Time Transfer Using a Low-Cost Dual-Frequency GNSS Receiver

February 15, 2024
Author(s)
Aidan Montare, Andrew Novick, Jeffrey Sherman
Common-view time transfer can be performed using either single (L1) or dual (L1/L2) frequency global navigation satellite system (GNSS) signals. Using dual-frequency receivers for common-view has advantages but has historically been of significantly higher
Displaying 1526 - 1550 of 143784
Was this page helpful?