Skip to main content

NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.

Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.

U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications

NIST Authors in Bold

Displaying 526 - 550 of 913

Millimeter Wave Detection via Autler-Townes Splitting in Rubidium Rydberg Atoms

July 17, 2014
Author(s)
Joshua A. Gordon, Christopher L. Holloway, Andrew Schwarzkopf, Dave Anderson, Stephanie Miller, Nithiwadee Thaicharoen, Georg Raithel
In this paper we demonstrate the detection of millimeter waves via Autler-Townes splitting in 85Rb Rydberg atoms. This method may provide an independent atomic-based SI-traceable method for measuring mm-wave electric fi elds, which addresses a gap in

Photon Emission from a Cavity-Coupled Double Quantum Dot

July 16, 2014
Author(s)
Y.-Y. Liu, Karl Petersson, J. Stehlik, Jacob Taylor, Jason Petta
We study a voltage biased InAs double quantum dot (DQD) that is coupled to a superconducting transmission line resonator. Inelastic tunneling in the DQD is mediated by electron phonon coupling and coupling to the cavity mode. We show that electronic

Superconducting nanowire single photon detectors fabricated from an amorphous Mo0.75Ge0.25 thin-film

July 15, 2014
Author(s)
Varun B. Verma, Adriana E. Lita, Michael R. Vissers, Francesco Marsili, David P. Pappas, Richard P. Mirin, Sae Woo Nam
We present the characteristics of superconducting nanowire single photon detectors (SNSPDs) fabricated from amorphous Mo0.75Ge0.25 thin -films. Fabricated devices show a saturation of the internal detection efficiency at temperatures below 1 K, with system

A classical channel model for gravitational decoherence

June 26, 2014
Author(s)
Jacob M. Taylor, Dvir Kafri, G J. Milburn
We show that, by treating the gravitational interaction between two mechanical resonators as a classical measurement channel, a gravitational decoherence model results that is equivalent to a model first proposed by Diosi. The resulting decoherence model

LDPC Error Correction for Gb/s QKD

June 24, 2014
Author(s)
Alan Mink, Anastase Nakassis
Low Density Parity Check (LDPC) error correction is a one-way algorithm that has become popular for quantum key distribution (QKD) post-processing. Graphic processing units (GPUs) provide an interesting attached platform that may deliver Gb/s error

Photon-Efficient High-Dimensional Quantum Key Distribution

June 12, 2014
Author(s)
Tian Zhong, Hongchao Zhou, Ligong Wang, Gregory Wornell, Zheshen Zhang, Jeffrey Shapiro, Franco N. Wong, Rob Horansky, Varun Verma, Adriana Lita, Richard Mirin, Thomas Gerrits, Sae Woo Nam, Alessandro Restelli, Joshua Bienfang, Francesco Marsili, Matthew Shaw
We demonstrate two high-dimensional QKD protocols - secure against collective Gaussian attacks - yielding up to 8.6 secure bits per photon and 6.7 Mb/s throughput, with 6.9 bits per photon after transmission through 20 km of fiber.

Polar codes in a QKD Environment

May 22, 2014
Author(s)
Anastase Nakassis, Alan Mink
Polar coding is the most recent encoding scheme in the quest for error correction codes that approaches the Shannon limit, has a simple structure, and admits fast decoders. As such, it is an interesting candidate for the quantum key distribution (QKD)

A single photon transistor based on superconducting systems

May 12, 2014
Author(s)
Marco Manzoni, Florentin Reiter, Jacob Taylor, Anders Sorensen
In analogy with electronic transistors, a single photon transistor is a device where the presence or absence of a single gate photon controls the propagation of a large number of signal photons [1, 2]. Such devices would represent a milestone in our

Topological physics with light

May 1, 2014
Author(s)
Jacob M. Taylor, Mohammad Hafezi
Electrons in a so-called topological insulator circulate around the material’s boundary without ever straying into the bulk. Uncharged photons can be induced to carry out similar behavior.

Direct generation of three-photon polarization entanglement

April 28, 2014
Author(s)
Deny Hamel, Krister Shalm, Hannes Hubel, Aaron J. Miller, Francesco F. Marsili, Varun Verma, Richard Mirin, Sae Woo Nam, Kevin Resch, Thomas Jennewein
Non-classical states of light are of fundamental importance for emerging quantum technologies. All optics experiments producing multi-qubit entangled states have until now relied on outcome post-selection, a procedure where only the measurement results

Quantum Algorithms for Fermionic Quantum Field Theories

April 28, 2014
Author(s)
Stephen P. Jordan, Keith S. Lee, John Preskill
Extending previous work on scalar field theories, we develop a quantum algorithm to compute relativistic scattering amplitudes in fermionic field theories, exemplified by the massive Gross-Neveu model. The algorithm introduces new techniques to meet the

Time-resolved double-slit interference pattern measurement with entangled photons

April 28, 2014
Author(s)
Lynden K. Shalm, Thomas Jennewein, Kevin Resch, Piotr Kolenderski, Carmelo Scarcella, Kelsey D. Johnsen Johnsen, Deny Hamel, Cahterine Holloway, Simone Tisa, Alberto Tosi
The double-slit experiment strikingly demonstrates the wave-particle duality of quantum objects. In this famous experiment, particles pass one-by-one through a pair of slits and are detected on a distant screen. A distinct wave-like pattern emerges after

Multiple-time-scale blinking in InAs quantum dot single photon sources

April 16, 2014
Author(s)
Marcelo I. Davanco, C S. Hellberg, Serkan Ates, Antonio Badolato, Kartik A. Srinivasan
We use photon correlation measurements to study blinking in single, epitaxially-grown selfassembled InAs quantum dots situated in circular Bragg grating and microdisk cavities. The normalized second-order correlation function g(2)( t) is studied across

Tunable Resonant and Nonresonant Interactions between a Phase Qubit and LC Resonator

March 26, 2014
Author(s)
Michael S. Allman, Jed D. Whittaker, Manuel C. Castellanos Beltran, Katarina Cicak, Fabio C. Da Silva, Michael DeFeo, Florent Q. Lecocq, Adam J. Sirois, John D. Teufel, Jose A. Aumentado, Raymond W. Simmonds
We use a flux-biased radio frequency superconducting quantum interference device (rf SQUID) with an embedded flux-biased direct current SQUID to generate strong resonant and nonresonant tunable interactions between a phase qubit and a lumped-element

Optical detection of radio waves through a nanomechanical transducer

March 5, 2014
Author(s)
Jacob M. Taylor, Tolga Bagci, A Simonsen, Silvan Schmid, L Villanueva, Emil Zeuthen, Anders Sorensen, Koji Usami, A Schliesser, E.S. Polzik
Low-loss transmission and sensitive recovery of weak radio-frequency (rf) and mi- crowave signals is an ubiquitous technological challenge, crucial in fields as diverse as radio astronomy, medical imaging, navigation and communication, including those of

Graphene-on-dielectric micromembrane for optoelectromechanical hybrid devices

February 7, 2014
Author(s)
Jacob M. Taylor, Silvan Schmid, Tolga Bagci, Emil Zeuthen, Patrick Herring, Maja Cassidy, C. M. Marcus, Bartolo Amato, Anja Boisen, Yong C. Shin, Jing Kong, Anders Sorensen, Koji Usami, E.S. Polzik
Due to their exceptional mechanical and optical properties, dielectric silicon nitride (SiN) mi- cromembranes have become the centerpiece of many optomechanical experiments. Efficient capac- itive coupling of the membrane to an electrical system would

Third-order antibunching from an imperfect single-photon source

February 4, 2014
Author(s)
Martin J. Stevens, Scott C. Glancy, Sae Woo Nam, Richard P. Mirin
We measure second- and third-order temporal coherences, g(2)(τ) and g(3)(τ1,τ2), of an optically excited single-photon source: an InGaAs quantum dot in a microcavity pedestal. Increasing the optical excitation power leads to an increase in the measured

Third-order antibunching from an imperfect single-photon source

February 4, 2014
Author(s)
Martin J. Stevens, Scott C. Glancy, Sae Woo Nam, Richard P. Mirin
We measure second- and third-order temporal coherences, g (2)(τ) and g (3)(τ1, τ2), of an optically excited single-photon source: an InGaAs quantum dot in a microcavity pedestal. Increasing the optical excitation power leads to an increase in the measured

Quantum teleportation from a telecom-wavelength photon to a solid-state quantum memory

January 28, 2014
Author(s)
Felix Bussieres, Christoph Clausen, Alexey Tiranov, Boris Korzh, Varun Verma, Sae Woo Nam, Francesco Marsili, Alban Ferrier, Harald Hermann, Christine Silberhorn, Wolfgang Sohler, Mikael Afzelius, Nicolas Gisin
In quantum teleportation [1], the state of a single quantum system is disembodied into classical information and purely quantum correlations, to be later reconstructed onto a second system that has never directly interacted with the first one. This
Displaying 526 - 550 of 913
Was this page helpful?