An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Yuri Ralchenko, DIPTI DIPTI, Oleksandr Marchuk, Marc Sackers, Stephan Ertmer, Sebastijan Brezinsek, Arkadi Kreter
Laser absorption spectroscopy provides high-resolution spectra of atomic transitions that reveal many often inaccessible nuances. Correctly analyzing the absorption spectra is impossible without accurately capturing the line shape. We demonstrate in this
Fanchen Meng, Benedikt Maurer, Fabian Peschel, Sencer Selcuk, Xiaohui Qu, Mark S Hybertsen, Christian Vorwerk, Claudia Draxl, John Vinson, Deyu Lu
X-ray absorption spectroscopy (XAS) is an element-specific materials characterization technique that is sensitive to structural and electronic properties. First-principles simulated XAS has been widely used as a powerful tool to interpret experimental
Unay Dorken Gallastegi, Hoover Rueda-Chacon, Martin Stevens, Vivek Goyal
The wavelength dependence of atmospheric absorption creates range cues in hyperspectral measurements that can be exploited for passive ranging using only thermal emissions. In this work, we present fundamental limits on absorption-based ranging under a
GAR WING TRUONG, Lukas W. Perner, D. Michelle Bailey, G Winkler, S Catano-Lopez, V Wittwer, T Sudmeyer, C Nguyen, David Follman, Adam Fleisher, OLIVER HECKL, Garrett Cole
Erin Adkins, Tijs Karman, Alain Campargue, Didier Mondelain, Joseph Hodges
Collision-induced absorption from vibronic transitions of O2-O2 and O2-N2 collision complexes is an important contributor to light-matter interaction in the atmosphere with relevance to radiative heat transfer and spectroscopic remote sensing. Despite in
Melissa Cendejas, Oscar Paredes Mellone, Unni Kurumbail, Zisheng Zhang, Jacob Jansen, Faysal Ibrahim, Son Dong, John Vinson, Anastassia Alexandrova, Dimosthenis Sokaras, Simon Bare, Ive Hermans
Hexagonal boron nitride (hBN) is a highly selective catalyst for the oxidative dehydrogenation of propane (ODHP) to propylene. Using a variety of ex situ characterization techniques, the activity of the catalyst has been attributed to the formation of an
David Long, Matthew Cich, Carl Mathurin, Garrett Mathews, Adam Heiniger, Augustine Frymire, Gregory Rieker
Frequency combs have revolutionized the field of optical spectroscopy, enabling researchers to probe molecular systems with a multitude of accurate and precise optical frequencies. Although there have been tremendous strides in direct frequency comb
Balanced detection based on double beams is widely used to reduce common-mode noises, such as laser intensity fluctuation and irregular wavelength scanning, in absorption spectroscopy. However, employing an additional detector can increase the total system
John Kitching, Matthew Hummon, William McGehee, Ying-Ju Wang, Susan Schima
We describe work toward the development of next-generation chip-scale atomic clocks, which combine small size, low power consumption and manufacturability with high frequency stability. The use of optical transitions in microfabricated vapor cells improves
Ryan Cole, Connor Fredrick, Newton Nguyen, Scott Diddams
We report precision atmospheric spectroscopy of CO2 using a laser heterodyne radiometer (LHR) calibrated with an optical frequency comb. Using the comb-calibrated LHR, we record spectra of atmospheric CO2 near 1572.33 nm with a spectral resolution of 200
Yuankun Lin, Noah Hurley, Steve Kamau, Evan Hathaway, Yan Jiang, Roberto Gonzalez Rodriguez, Sinto Varghese, Sergiy Krylyuk, Albert Davydov, Yuanxi Wang, Anupama Kaul, Jingbiao Cui
Herein, photoluminescence (PL) and fluorescence lifetime imaging (FLIM) in multilayer MoSe2 are studied. Strain-activated stimulated emission via defect levels in multilayer MoSe2 under laser excitation is observed, for the first time in defects of
Daniel Herman, Griffin Mead, Fabrizio Giorgetta, Esther Baumann, Nathan Malarich, Brian Washburn, Nathan R. Newbury, Ian Coddington, Kevin Cossel
We present an open-path mid-infrared dual-comb spectrometer (DCS) capable of precise measurement of the stable water isotopologues H216O and HD16O. This system runs in a remote configuration at a rural test site with high uptime and achieves a precision of
Eric Norrgard, Catherine Cooksey, Stephen Eckel, Nickolas Pilgram, Kayla Rodriguez, Howard W. Yoon, Yuly Andrea Chamorro Mena, Lukas Pasteka, Anastasia Borschevsky
Here we report measured and calculated values of radiative decay rates and vibrational branching fractions for the A$^2\Pi$ state of MgF. The decay rate measurements use time-correlated single photon counting with roughly 1\,\% total uncertainty. Branching
Fabrizio Giorgetta, Esther Baumann, Brian Washburn, Nathan Malarich, Jean-Daniel Deschenes, Ian Coddington, Nathan Newbury, Kevin Cossel
Greenhouse-gas dual-comb spectroscopy is extended to a city-scale 14.5-km path length using remote receiver and data acquisition. This configuration enables lower link losses and longer path lengths compared to folded paths with a remote retroreflector
Bruce D. Ravel, Trevor Tyson, Han Zhang, Sizhan Liu, SANJIT GHOSE, U.J. Idehenre, Yury Barnakov, S.A. Basun, D.R. Evans
Nanoscale BaTiO3 particles (10 nm) prepared by ball-milling a mixture of oleic acid and heptane have been reported to have an electric polarization several times larger than that for bulk BaTiO3. In this work, detailed local, intermediate, and long-range
Yang Yang, Dipti Dipti, Chihiro Suzukic, A. C. Gall, R. Silwal, Samuel Sanders, Joseph N. Tan, Aung S. Naing, Endre Takacs, Yuri Ralchenko
Extreme ultraviolet (EUV) radiation from M-shell Ca-like, Nd40+, through Nalike, Nd49+, highly charged ions have been measured at an electron beam ion trap (EBIT) facility at the National Institute of Standards and Technology. To produce the ionization
Jeffrey Schwartz, Sergiy Krylyuk, Devon Jakob, Albert Davydov, Andrea Centrone
Control over the local chemical composition and spatial heterogeneities in nanomaterials provides a means to impart new functions and to tailor their properties in many applications. For two-dimensional (2D) van der Waals materials, intercalation is one
Nathan Malarich, Kevin Cossel, JEAN-DANIEL DESCHENES, Fabrizio Giorgetta, Brian Washburn, Nathan Newbury, Ian Coddington, Jerome Genest
Operation of any dual-comb spectrometer requires digitization of the interference signal before further processing. Nonlinearities in the analog-to-digital conversion can alter the apparent gas concentration by multiple percent, limiting both precision and
Ganga Neupane, Andrew Winchester, Nicolas Marquez Peraca, David Albin, Joel Duenow, Matthew Reese, Sujitra Pookpanratana, Susanna Thon, Behrang Hamadani
Clear visualization and understanding of luminescence properties of grain interiors and grain boundaries in polycrystalline thin-film photovoltaic materials are crucial to achieving high-performance solar cells. Luminescence-based measurements, for example
Nathan Malarich, Fabrizio Giorgetta, Kevin Cossel, Brian Washburn, Jerome Genest, Nathan Newbury, Ian Coddington
We quantify the percent-level bias in dual-comb spectroscopy due to nonlinearities from the analog-to-digital conversion and demonstrate a compensation method to enable gas concentration measurements with 0.2% accuracy.
Nik Prajapati, Aly Artusio-Glimpse, Matt Simons, Samuel Berweger, Drew Rotunno, Maitreyi Jayaseelan, Kaleb Campbell, Christopher L. Holloway
Rydberg atoms show great promise for use as self-calibrated electric field sensors for a broad range of frequencies. Their response is traceable to the international system of units making them a valuable tool for a variety of applications including
Karina Bzheumikhova, John Vinson, Ranier Unterumsberger, Malte Wansleben, Claudia Zech, Kai Schuler, Yves Kayser, Philipp Honicke, Burkhard Beckhoff
Using well-calibrated experimental data we demonstrate the applicability of theoretical X-ray absorption spectroscopy (XAS) as well as X-ray emission spectroscopy (XES) calculations for titanium (Ti), titanium oxide (TiO), and titanium dioxide (TiO2) at
ryan muddiman, Kevin O' Dwyer, Charles Camp, Bryan Hennelly
Broadband coherent anti-Stokes Raman scattering (BCARS) is capable of producing high-quality Raman spectra spanning broad bandwidths, 400–4000 cm−1, with millisecond acquisition times. Raw BCARS spectra, however, are a coherent combination of vibrationally