NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Jacob Pawlik, Tomasz Karpisz, Yasaman Kazemipour, Nicholas Derimow, Sarah Evans, Bryan Bosworth, Christian Long, Nathan Orloff, James Booth, Angela Stelson
We demonstrate a glass microwave microfluidic device for determining the permittivity of a wide range of liquid chemicals from 100 MHz to 10 GHz with relatively low uncertainty. Conventional microwave microfluidic devices use polymer-based microfluidic
Sean Blakley, Thuc Mai, Stephen Moxim, Jason Ryan, Adam Biacchi, Angela Hight Walker, Robert McMichael
The 1E—1A1 singlet manifold of the negatively charged nitrogen vacancy (NV −) center in diamond plays a central role in the quantum information and quantum sensing applications of the NV − center. However, the energy of this manifold within the diamond
Nandita Abhyankar, Megan Catterton, Gregory A. Cooksey, Veronika Szalai
We use planar inverse anapole (PIA) microresonators to report the first experimental demonstration of continuous wave (CW) electron paramagnetic resonance (EPR) spectroscopy of sub-microliter volumes of sub-micromolar solutions of nitroxide radicals, with
Devon Jakob, Jeffrey Schwartz, Georges Pavlidis, Karen Grutter, Andrea Centrone
Photothermal induced resonance (PTIR), also known as AFM-IR, enables nanoscale IR absorption spectroscopy by transducing the local photothermal expansion and contraction of a sample with the tip of an atomic force microscope. PTIR spectra enable material
Advances in THz methods and applications require the detection of weak THz pulsed signals. One solution to this problem is to amplify weak signals using optically biased electro-optical (EO) techniques. Several different EO amplification schemes are
Jamie Geng, Dehui Zhang, Inha Kim, Hyong Min Kim, Naoiki Higashitarumizu, I K M Reaz Rahman, Lam Lam, Joel W. Ager III, Albert Davydov, Sergiy Krylyuk, Ali Javey
Bulk γ-InSe has a direct bandgap of 1.24 eV, which corresponds to near infrared wavelengths (λ = 1.0 µm) useful in optoelectronic applications from biometric detectors to silicon photonics. However, its potential for optoelectronic applications is largely
Alexander Yulaev, Chad Ropp, John Kitching, Vladimir Aksyuk, Matthew Hummon
We demonstrate chip-scale sub-Doppler spectroscopy in an integrated and fiber-coupled photonic-metasurface device. The device is a stack of three planar components: a photonic mode expanding grating emitter circuit with a monolithically integrated tilt
The nonlinear response of materials, an increasingly important aspect of light-matter interaction, can be challenging to measure in highly absorbing materials. Here, we introduce an interferometric technique that enables a direct measurement of the nonline
Absolute quantity imaging of biomolecules on a single cell level is critical for measurement assurance in biosciences and bioindustries. While infrared (IR) transmission microscopy is a powerful label-free imaging modality capable of chemical
Nickolas Pilgram, Benjamin Baldwin, David La Mantia, Stephen Eckel, Eric Norrgard
We measure the complete set of transition frequencies necessary to laser cool and trap MgF molecules. Specifically, we report the frequency of multiple low $J$ transitions of the $X^2\Sigma^+(v^\prime\prime}=0,1) \rightarrow A^2\Pi_1⁄2(v^\prime=0)$, $X^2
Single-isotherm n(p, T90) results are reported for the gases Ar, N2, H2O, and D2O at vacuum wavelength λ = 1542.383(1) nm. The argon and nitrogen isotherms were measured near 303 K; the water isotherms were measured near 373 K. Combined with the two
Takuma Okumura, Toshiyuki Azuma, Douglas Bennett, W. Bertrand (Randy) Doriese, Malcolm Durkin, Joseph Fowler, Johnathon Gard, Tadashi Hashimoto, Ryota Hayakawa, Yuto Ichinohe, Paul Indelicato, Tadaaki Isobe, Sohtaro Kanda, Daiji Kato, Miho Katsuragawa, Naritoshi Kawamura, Yasushi Kino, Nao Kominato, Yasuhiro Miyake, Kelsey Morgan, Hirofumi Noda, Galen O'Neil, Shinji Okada, Kenichi Okutsu, Nancy Paul, Carl D. Reintsema, Toshiki Sato, Dan Schmidt, Kouichiro Shimomura, Patrick Strasser, Daniel Swetz, Tadayuki Takahashi, Shinichiro Takeda, Soshi Takeshita, Motonobu Tampo, Hideyuki Tatsuno, Tong Xiao-Min, Joel Ullom, Shin Watanabe, Shinya Yamada, Takuma Yamashita
Electronic K x rays emitted by muonic Ar atoms in the gas phase were observed using a superconducting transition-edge-sensor microcalorimeter. The high-precision energy spectra provided a clear signature of the presence of muonic atoms accompanied by a few
Dual optical frequency comb spectroscopy allows for high speed, broadband measurements without any moving parts. Here, we combine differential chirp down conversion to probe large spectral bandwidths in the near-infrared (NIR) and serrodyne modulation to
Heleni Krelman, Ori Nefesh, Kfir Levi, Douglas Bopp, Songbai Kang, Liron Stern, John Kitching
Achieving precise and adjustable control over laser frequency is an essential requirement in numerous applications such as precision spectroscopy, quantum control, and sensing. In many of such applications it is desired to stabilize a laser with a variable
Bruce D. Ravel, Darren Driscoll, Frankie White, SUBHAMAY PRAMANIK, Jeffrey Einkauf, Dmytro Bykov, Santanu Roy, Richard Mayes, Laetitia Delmau, Samantha Schrell, Thomas Dyke, April Miller, Matt Silveira, Silveira2 van Cleve, Roy Copping, Sandra Davern, Santa Jansone-Popova, Ilja Popovs, Alexander Ivanov
Lanthanide rare earth metals are ubiquitous in modern technologies, but we know little about chemistry of the 61st element, promethium (Pm), a lanthanide which is highly radioactive and inaccessible. Despite its significance, Pm has conspicuously been
Nicholas Pike, Ruth Pachter, Michael Altvater, Chris Stevens, Matthew Klein, Joshua Hendrickson, Huairuo Zhang, Sergiy Krylyuk, Albert Davydov, Nicholas Glavin
Indium selenide (InSe) multilayers have attracted much interest recently due to their electronic and optical properties, partially dependent on the existence of an indirect-to-direct bandgap transition that is correlated to the multilayer thickness. In
Nathan Nakamura, Paul Szypryt, Amber Dagel, Bradley Alpert, Douglas Bennett, W.Bertrand (Randy) Doriese, Malcolm Durkin, Joseph Fowler, Dylan Fox, Johnathon Gard, Ryan Goodner, James Zachariah Harris, Gene C. Hilton, Edward Jimenez, Burke Kernen, Kurt Larson, Zachary H. Levine, Daniel McArthur, Kelsey Morgan, Galen O'Neil, Christine Pappas, Carl D. Reintsema, Dan Schmidt, Peter Schulz, Daniel Swetz, Kyle Thompson, Joel Ullom, Leila R. Vale, Courtenay Vaughan, Christopher Walker, Joel Weber, Jason Wheeler
X-ray nanotomography is a powerful tool for the characterization of nanoscale materials and structures, but it is difficult to implement due to the competing requirements of X-ray flux and spot size. Due to this constraint, state-of-the-art nanotomography
Stephanie Moffitt, Bryan Barnes, Thomas A. Germer, Steven Grantham, Eric Shirley, Martin Sohn, Daniel Sunday, Charles S. Tarrio
Semiconductor devices are noted for ever-decreasing dimensions but now are also becoming more complex. While scanning probe microscopy can still resolve the smallest features, it does not have the throughput for high-volume characterization of full wafers
The intriguing law of anomalous numbers, also named Benford's law, states that the significant digits of data follow a logarithmic distribution favoring the smallest values. In this work, we test the compliance with this law of the atomic databases
Stian Romberg, Paul Roberts, Chad R. Snyder, Anthony Kotula
Simultaneous rheology and conversion measurements of neat and composite epoxy resins reveal that conventional models neither accurately nor fully describe the relationship between rheology and conversion. We find that models predicting thermoset conversion
We present a method to incorporate Debye-Waller effects on core-excitation spectra in methods other than real-space multiple scattering formulations. The method draws ideas from multiple-scattering theory to realize effects of variations in interatomic
Yuri Ralchenko, DIPTI DIPTI, Oleksandr Marchuk, Marc Sackers, Stephan Ertmer, Sebastijan Brezinsek, Arkadi Kreter
Laser absorption spectroscopy provides high-resolution spectra of atomic transitions that reveal many often inaccessible nuances. Correctly analyzing the absorption spectra is impossible without accurately capturing the line shape. We demonstrate in this
Fanchen Meng, Benedikt Maurer, Fabian Peschel, Sencer Selcuk, Xiaohui Qu, Mark S Hybertsen, Christian Vorwerk, Claudia Draxl, John Vinson, Deyu Lu
X-ray absorption spectroscopy (XAS) is an element-specific materials characterization technique that is sensitive to structural and electronic properties. First-principles simulated XAS has been widely used as a powerful tool to interpret experimental