Skip to main content

NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.

Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.

U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications

Search Title, Abstract, Conference, Citation, Keyword or Author
  • Published Date
Displaying 26 - 50 of 904

Glass microwave microfluidic devices for broadband characterization of diverse fluids

November 15, 2024
Author(s)
Jacob Pawlik, Tomasz Karpisz, Yasaman Kazemipour, Nicholas Derimow, Sarah Evans, Bryan Bosworth, Christian Long, Nathan Orloff, James Booth, Angela Stelson
We demonstrate a glass microwave microfluidic device for determining the permittivity of a wide range of liquid chemicals from 100 MHz to 10 GHz with relatively low uncertainty. Conventional microwave microfluidic devices use polymer-based microfluidic

Spectroscopy of photoionization from the 1E singlet state in nitrogen-vacancy centers in diamond

October 17, 2024
Author(s)
Sean Blakley, Thuc Mai, Stephen Moxim, Jason Ryan, Adam Biacchi, Angela Hight Walker, Robert McMichael
The 1E—1A1 singlet manifold of the negatively charged nitrogen vacancy (NV −) center in diamond plays a central role in the quantum information and quantum sensing applications of the NV − center. However, the energy of this manifold within the diamond

Unusually strong near-infrared photoluminescence of highly transparent bulk InSe flakes

September 23, 2024
Author(s)
Jamie Geng, Dehui Zhang, Inha Kim, Hyong Min Kim, Naoiki Higashitarumizu, I K M Reaz Rahman, Lam Lam, Joel W. Ager III, Albert Davydov, Sergiy Krylyuk, Ali Javey
Bulk γ-InSe has a direct bandgap of 1.24 eV, which corresponds to near infrared wavelengths (λ = 1.0 µm) useful in optoelectronic applications from biometric detectors to silicon photonics. However, its potential for optoelectronic applications is largely

Spectroscopy of laser cooling transitions in MgF

August 23, 2024
Author(s)
Nickolas Pilgram, Benjamin Baldwin, David La Mantia, Stephen Eckel, Eric Norrgard
We measure the complete set of transition frequencies necessary to laser cool and trap MgF molecules. Specifically, we report the frequency of multiple low $J$ transitions of the $X^2\Sigma^+(v^\prime\prime}=0,1) \rightarrow A^2\Pi_1⁄2(v^\prime=0)$, $X^2

Optical n(p, T_90) measurement suite 3: results at l = 1542 nm

August 3, 2024
Author(s)
Patrick Egan, Yuanchao Yang
Single-isotherm n(p, T90) results are reported for the gases Ar, N2, H2O, and D2O at vacuum wavelength λ = 1542.383(1) nm. The argon and nitrogen isotherms were measured near 303 K; the water isotherms were measured near 373 K. Combined with the two

Few-electron highly charged muonic Ar atoms verified by electronic K xrays

July 10, 2024
Author(s)
Takuma Okumura, Toshiyuki Azuma, Douglas Bennett, W. Bertrand (Randy) Doriese, Malcolm Durkin, Joseph Fowler, Johnathon Gard, Tadashi Hashimoto, Ryota Hayakawa, Yuto Ichinohe, Paul Indelicato, Tadaaki Isobe, Sohtaro Kanda, Daiji Kato, Miho Katsuragawa, Naritoshi Kawamura, Yasushi Kino, Nao Kominato, Yasuhiro Miyake, Kelsey Morgan, Hirofumi Noda, Galen O'Neil, Shinji Okada, Kenichi Okutsu, Nancy Paul, Carl D. Reintsema, Toshiki Sato, Dan Schmidt, Kouichiro Shimomura, Patrick Strasser, Daniel Swetz, Tadayuki Takahashi, Shinichiro Takeda, Soshi Takeshita, Motonobu Tampo, Hideyuki Tatsuno, Tong Xiao-Min, Joel Ullom, Shin Watanabe, Shinya Yamada, Takuma Yamashita
Electronic K x rays emitted by muonic Ar atoms in the gas phase were observed using a superconducting transition-edge-sensor microcalorimeter. The high-precision energy spectra provided a clear signature of the presence of muonic atoms accompanied by a few

SINGLE-MODULATOR, DUAL COMB SERRODYNE SPECTROSCOPY

July 3, 2024
Author(s)
Jasper Stroud, David Long, David Plusquellic
Dual optical frequency comb spectroscopy allows for high speed, broadband measurements without any moving parts. Here, we combine differential chirp down conversion to probe large spectral bandwidths in the near-infrared (NIR) and serrodyne modulation to

Laser Offset Stabilization with Chip-Scale Atomic Diffractive Elements

June 7, 2024
Author(s)
Heleni Krelman, Ori Nefesh, Kfir Levi, Douglas Bopp, Songbai Kang, Liron Stern, John Kitching
Achieving precise and adjustable control over laser frequency is an essential requirement in numerous applications such as precision spectroscopy, quantum control, and sensing. In many of such applications it is desired to stabilize a laser with a variable

Observation of a promethium complex in solution

May 22, 2024
Author(s)
Bruce D. Ravel, Darren Driscoll, Frankie White, SUBHAMAY PRAMANIK, Jeffrey Einkauf, Dmytro Bykov, Santanu Roy, Richard Mayes, Laetitia Delmau, Samantha Schrell, Thomas Dyke, April Miller, Matt Silveira, Silveira2 van Cleve, Roy Copping, Sandra Davern, Santa Jansone-Popova, Ilja Popovs, Alexander Ivanov
Lanthanide rare earth metals are ubiquitous in modern technologies, but we know little about chemistry of the 61st element, promethium (Pm), a lanthanide which is highly radioactive and inaccessible. Despite its significance, Pm has conspicuously been

Understanding the Origin and Implication of the Indirect-to-Direct Bandgap Transition in Multilayer InSe

May 2, 2024
Author(s)
Nicholas Pike, Ruth Pachter, Michael Altvater, Chris Stevens, Matthew Klein, Joshua Hendrickson, Huairuo Zhang, Sergiy Krylyuk, Albert Davydov, Nicholas Glavin
Indium selenide (InSe) multilayers have attracted much interest recently due to their electronic and optical properties, partially dependent on the existence of an indirect-to-direct bandgap transition that is correlated to the multilayer thickness. In

Nanoscale Three-Dimensional Imaging of Integrated Circuits Using a Scanning Electron Microscope and Transition-Edge Sensor Spectrometer

April 30, 2024
Author(s)
Nathan Nakamura, Paul Szypryt, Amber Dagel, Bradley Alpert, Douglas Bennett, W.Bertrand (Randy) Doriese, Malcolm Durkin, Joseph Fowler, Dylan Fox, Johnathon Gard, Ryan Goodner, James Zachariah Harris, Gene C. Hilton, Edward Jimenez, Burke Kernen, Kurt Larson, Zachary H. Levine, Daniel McArthur, Kelsey Morgan, Galen O'Neil, Christine Pappas, Carl D. Reintsema, Dan Schmidt, Peter Schulz, Daniel Swetz, Kyle Thompson, Joel Ullom, Leila R. Vale, Courtenay Vaughan, Christopher Walker, Joel Weber, Jason Wheeler
X-ray nanotomography is a powerful tool for the characterization of nanoscale materials and structures, but it is difficult to implement due to the competing requirements of X-ray flux and spot size. Due to this constraint, state-of-the-art nanotomography

Instrument Development for Spectroscopic Ellipsometry and Diffractometry in the EUV

April 24, 2024
Author(s)
Stephanie Moffitt, Bryan Barnes, Thomas A. Germer, Steven Grantham, Eric Shirley, Martin Sohn, Daniel Sunday, Charles S. Tarrio
Semiconductor devices are noted for ever-decreasing dimensions but now are also becoming more complex. While scanning probe microscopy can still resolve the smallest features, it does not have the throughput for high-volume characterization of full wafers

Benford's law in atomic spectra and opacity databases

April 21, 2024
Author(s)
Yuri Ralchenko, Jean-Christophe Pain
The intriguing law of anomalous numbers, also named Benford's law, states that the significant digits of data follow a logarithmic distribution favoring the smallest values. In this work, we test the compliance with this law of the atomic databases

Evaluating Models That Predict Epoxy Conversion Using Rheological Properties

April 15, 2024
Author(s)
Stian Romberg, Paul Roberts, Chad R. Snyder, Anthony Kotula
Simultaneous rheology and conversion measurements of neat and composite epoxy resins reveal that conventional models neither accurately nor fully describe the relationship between rheology and conversion. We find that models predicting thermoset conversion

Debye-Waller Effects in Bethe-Salpeter Calculations

March 3, 2024
Author(s)
Eric Shirley, Joseph Woicik
We present a method to incorporate Debye-Waller effects on core-excitation spectra in methods other than real-space multiple scattering formulations. The method draws ideas from multiple-scattering theory to realize effects of variations in interatomic

Zeeman effect in the weak and intermediate field regime of Kr isotopes at the linear plasma device PSI-2

February 16, 2024
Author(s)
Yuri Ralchenko, DIPTI DIPTI, Oleksandr Marchuk, Marc Sackers, Stephan Ertmer, Sebastijan Brezinsek, Arkadi Kreter
Laser absorption spectroscopy provides high-resolution spectra of atomic transitions that reveal many often inaccessible nuances. Correctly analyzing the absorption spectra is impossible without accurately capturing the line shape. We demonstrate in this

Multi-code Benchmark on Ti K-edge X-ray Absorption Spectra of Ti-O Compounds

January 11, 2024
Author(s)
Fanchen Meng, Benedikt Maurer, Fabian Peschel, Sencer Selcuk, Xiaohui Qu, Mark S Hybertsen, Christian Vorwerk, Claudia Draxl, John Vinson, Deyu Lu
X-ray absorption spectroscopy (XAS) is an element-specific materials characterization technique that is sensitive to structural and electronic properties. First-principles simulated XAS has been widely used as a powerful tool to interpret experimental
Was this page helpful?