An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
When two spatially separated parties make measurements on an unknown entangled quantum state, what correlations can they achieve? How difficult is it to determine whether a given correlation is a quantum correlation? These questions are central to problems
Corey Rae McRae, A. McFadden, Ruichen Zhao, Haozhi Wang, Junling Long, Tongyu Zhao, Sungoh Park, Mustafa Bal, Christopher J. Palmstrom, David P. Pappas
Epitaxially grown superconductor/dielectric/superconductor trilayers have the potential to form high-performance superconducting quantum devices and may even allow scalable superconducting quantum computing with low-surface-area qubits such as the merged
Maxime Malnou, Michael Vissers, Jordan Wheeler, Joe Aumentado, Johannes Hubmayr, Joel Ullom, Jiansong Gao
We present the theoretical model and experimental characterization of a microwave kinetic inductance traveling-wave amplifier (KIT), whose noise performance, measured by a shot noise thermometer, approaches the quantum limit. Biased with a dc current, this
Yanxue Hong, Aruna Ramanayaka, Ryan Stein, Joshua M. Pomeroy
The design, fabrication and characterization of single metal gate layer, metal-oxide- semiconductor (MOS) quantum dot devices robust against dielectric breakdown are presented as prototypes for future diagnostic qubits. These devices were developed as a
Adam J. Sirois, Manuel C. Castellanos Beltran, Anna E. Fox, Samuel P. Benz, Peter F. Hopkins
Quantum computers with thousands or millions of qubits will require a scalable solution for qubit control and readout electronics. Colocating these electronics at millikelvin temperatures has been proposed and demonstrated, but there exist significant
Open system simulations of quantum transport enable the computational study of true steady states, Floquet states, and the role of temperature, time-dynamics, and fluctuations, among other physical processes. They are rapidly gaining traction, especially
Dileep Venkatarama Reddy, Robert R. Nerem, Sae Woo Nam, Richard Mirin, Varun Verma
Superconducting nanowire single-photon detectors (SNSPDs) are an enabling technology for a myriad of quantum-optics experiments that require high-efficiency detection, large count rates, and precise timing resolution. The system detection efficiency (SDE)
Kamal Choudhary, Kevin Garrity, Andrew C. Reid, Brian DeCost, Adam Biacchi, Angela R. Hight Walker, Zachary Trautt, Jason Hattrick-Simpers, Aaron Kusne, Andrea Centrone, Albert Davydov, Francesca Tavazza, Jie Jiang, Ruth Pachter, Gowoon Cheon, Evan Reed, Ankit Agrawal, Xiaofeng Qian, Vinit Sharma, Houlong Zhuang, Sergei Kalinin, Ghanshyam Pilania, Pinar Acar, Subhasish Mandal, David Vanderbilt, Karin Rabe
The Joint Automated Repository for Various Integrated Simulations (JARVIS) is an integrated infrastructure to accelerate materials discovery and design using density functional theory (DFT), classical force-fields (FF), and machine learning (ML) techniques
Yanxue Hong, Ryan Stein, Michael Stewart, Neil M. Zimmerman, Joshua M. Pomeroy
Aluminum oxide (AlOx)-based single-electron transistors (SETs) fabricated in ultra-high vacuum (UHV) chambers using in situ plasma oxidation show excellent stabilities over more than a week, enabling applications as tunnel barriers, capacitor dielectrics
Superconducting qubits, though promising for both near-term problem-solving as well as the development of large-scale quantum computing systems, are limited in performance largely by materials-induced decoherence channels which are maximized at millikelvin
We develop a framework for certifying randomness from Bell-test trials based on directly estimating the probability of the measurement outcomes with adaptive test supermartingales. The number of trials need not be predetermined, and one can stop performing
Anthony McFadden, Aranya Goswami, Michael Seas, Corey Rae McRae, Ruichen Zhao, David P. Pappas, Christopher J. Palmstrom
Epitaxial Al/GaAs/Al structures having controlled thickness of high-quality GaAs and pristine interfaces have been fabricated using a wafer-bonding technique. III-V semiconductor/Al structures are grown by molecular beam epitaxy on III-V semiconductor
Thomas Gerrits, Alan L. Migdall, Joshua C. Bienfang, John H. Lehman, Sae Woo Nam, Oliver T. Slattery, Jolene D. Splett, Igor Vayshenker, Chih-Ming Wang
We present our measurements of the detection efficiency of free-space and fiber-coupled single- photon detectors at wavelengths near 851 nm and 1533.6 nm. We investigate the spatial uniformity of one free-space-coupled silicon single-photon avalanche diode
Sumit Bhushan, Oliver T. Slattery, Xiao Tang, Lijun Ma
We outline a proposal to realize Electromagnetically Induced Transparency (EIT) with the potential to store Terahertz (THz) optical pulses in Cesium atoms. Such a system, when experimentally realized, has a potential to make Quantum Communication possible
Jacob Taylor, Gadi Afek, Sunil Bhave, Daniel Carney, Gordan Krnjaic, David Moore, Robinjeet Singh, Cindy Regal, Benjamin M. Brubaker, Andrew Geraci, Jonathan D. Cripe, Sohitri Ghosh, Jack Harris, Anson Hook, Jonathan Kunjummen, Rafael Lang, Li Tongcang, Tongyan Lin, Zhen Liu, Joseph Lykken, Lorenzo Magrini, Jack Manley, Nobuyuki Matsumoto, Alissa Monte, Fernando Monteiro, Thomas Purdy, C. J. Riedel, Swati Singh, Kanupriya Sinha, Juehang Qin, Dalziel Wilson, Yue Zhao
Numerous astrophysical and cosmological observations are best explained by the existence of dark matter, a mass density which interacts only very weakly with visible, baryonic matter. Searching for the extremely weak signals produced by this dark matter
Entangled photons produced by parametric down-conversion effectively have two down-conversion paths. Ideally, amplitudes of the two paths are matched.We show that the entanglement visibility is, to first order, insensitive to amplitude mismatch.
How can two parties with competing interests carry out a fair coin flip, using only a noiseless quantum channel? This problem (quantum weak coin-flipping) was formalized more than 15 years ago, and, despite some phenomenal theoretical progress, practical
Joseph Hagmann, Xiqiao Wang, Ranjit Kashid, Pradeep Namboodiri, Jonathan Wyrick, Scott W. Schmucker, Michael Stewart, Richard M. Silver, Curt A. Richter
Key to producing quantum computing devices based on the atomistic placement of dopants in silicon by scanning tunneling microscope (STM) lithography is the formation of embedded highly doped Si:P delta layers (δ-layers). This study investigates the