Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications

Search Title, Abstract, Conference, Citation, Keyword or Author
  • Published Date
Displaying 226 - 250 of 930

Control and readout of a superconducting qubit using a photonic link

March 24, 2021
Author(s)
Florent Lecocq, Franklyn Quinlan, Katarina Cicak, Joe Aumentado, Scott Diddams, John Teufel
Delivering on the revolutionary promise of a universal quantum computer will require processors with millions of quantum bits (qubits). In superconducting quantum processors, each qubit is individually addressed with microwave signal lines that connect

Efficient and low-backaction measurement of a superconducting qubit

March 3, 2021
Author(s)
Eric Rosenthal, Christian M. Schneider, Maxime Malnou, Ziyi Zhao, Felix Leditzky, Benjamin Chapman, Waltraut Wustmann, Xizheng Ma, Daniel A. Palken, Leila R. Vale, Gene C. Hilton, Jiansong Gao, Graeme Smith, Gerhard Kirchmair, Konrad Lehnert

Compact and Tunable Forward Coupler Based on High-Impedance Superconducting Nanowires

February 25, 2021
Author(s)
Marco Colangelo, Di Zhu, Daniel F. Santavicca, Brenden Butters, Joshua Bienfang, Karl K. Berggren
Developing compact, low-dissipation, cryogenic-compatible microwave electronics is essential for scaling up low-temperature quantum computing systems. In this paper, we demonstrate an ultracompact microwave directional forward coupler based on high

A simple low-latency real-time certifiable quantum random number generator

February 24, 2021
Author(s)
Yanbao Zhang, Hsin-Pin Lo, Alan Mink, Takuya Ikuta, Toshimori Honjo, Hiroki Takesue, William Munro
Quantum random numbers distinguish themselves from others by their intrinsic unpredictability arising from the principles of quantum mechanics. As such they are extremely useful in many scientific and real-world applications with considerable efforts going

A quantum enhanced search for dark matter axions

February 10, 2021
Author(s)
K M. Backes, Daniel A. Palken, S A. Kenany, Benjamin M. Brubaker, S B. Cahn, A Droster, Gene C. Hilton, Sumita Ghosh, H. Jackson, Steve K. Lamoreaux, A. F. Feder, Konrad Lehnert, S M. Lewis, Maxime Malnou, R H. Maruyama, N M. Rapidis, M Simanovskaia, Sukhman Singh, D H. Speller, I Urdinaran, Leila R. Vale, E. C. van Assendelft, K van Bibber, H. Wang

The membership problem for constant-sized quantum correlations is undecidable

January 26, 2021
Author(s)
Carl A. Miller, Honghao Fu, William Slofstra
When two spatially separated parties make measurements on an unknown entangled quantum state, what correlations can they achieve? How difficult is it to determine whether a given correlation is a quantum correlation? These questions are central to problems

Cryogenic microwave loss in epitaxial Al/GaAs/Al trilayers for superconducting circuits

January 14, 2021
Author(s)
Corey Rae McRae, A. McFadden, Ruichen Zhao, Haozhi Wang, Junling Long, Tongyu Zhao, Sungoh Park, Mustafa Bal, Christopher J. Palmstrom, David P. Pappas
Epitaxially grown superconductor/dielectric/superconductor trilayers have the potential to form high-performance superconducting quantum devices and may even allow scalable superconducting quantum computing with low-surface-area qubits such as the merged

Developing Single Layer MOS Quantum Dots for Diagnostic Qubits

December 28, 2020
Author(s)
Yanxue Hong, Aruna Ramanayaka, Ryan Stein, Joshua M. Pomeroy
The design, fabrication and characterization of single metal gate layer, metal-oxide- semiconductor (MOS) quantum dot devices robust against dielectric breakdown are presented as prototypes for future diagnostic qubits. These devices were developed as a

Josephson Microwave Sources Applied to Quantum Information Systems

December 18, 2020
Author(s)
Adam J. Sirois, Manuel C. Castellanos Beltran, Anna E. Fox, Samuel P. Benz, Peter F. Hopkins
Quantum computers with thousands or millions of qubits will require a scalable solution for qubit control and readout electronics. Colocating these electronics at millikelvin temperatures has been proposed and demonstrated, but there exist significant

The joint automated repository for various integrated simulations (JARVIS) for data-driven materials design

November 12, 2020
Author(s)
Kamal Choudhary, Kevin Garrity, Andrew C. Reid, Brian DeCost, Adam Biacchi, Angela R. Hight Walker, Zachary Trautt, Jason Hattrick-Simpers, Aaron Kusne, Andrea Centrone, Albert Davydov, Francesca Tavazza, Jie Jiang, Ruth Pachter, Gowoon Cheon, Evan Reed, Ankit Agrawal, Xiaofeng Qian, Vinit Sharma, Houlong Zhuang, Sergei Kalinin, Ghanshyam Pilania, Pinar Acar, Subhasish Mandal, David Vanderbilt, Karin Rabe
The Joint Automated Repository for Various Integrated Simulations (JARVIS) is an integrated infrastructure to accelerate materials discovery and design using density functional theory (DFT), classical force-fields (FF), and machine learning (ML) techniques

Reduction of charge offset drift using plasma oxidized aluminum in SETs

October 26, 2020
Author(s)
Yanxue Hong, Ryan Stein, Michael Stewart, Neil M. Zimmerman, Joshua M. Pomeroy
Aluminum oxide (AlOx)-based single-electron transistors (SETs) fabricated in ultra-high vacuum (UHV) chambers using in situ plasma oxidation show excellent stabilities over more than a week, enabling applications as tunnel barriers, capacitor dielectrics

Quantum Randomness from Probability Estimation with Classical Side Information

September 22, 2020
Author(s)
Emanuel Knill, Yanbao Zhang, Peter L. Bierhorst
We develop a framework for certifying randomness from Bell-test trials based on directly estimating the probability of the measurement outcomes with adaptive test supermartingales. The number of trials need not be predetermined, and one can stop performing

Epitaxial Al/GaAs/Al tri-layers fabricated using a novel wafer-bonding technique

September 15, 2020
Author(s)
Anthony McFadden, Aranya Goswami, Michael Seas, Corey Rae McRae, Ruichen Zhao, David P. Pappas, Christopher J. Palmstrom
Epitaxial Al/GaAs/Al structures having controlled thickness of high-quality GaAs and pristine interfaces have been fabricated using a wafer-bonding technique. III-V semiconductor/Al structures are grown by molecular beam epitaxy on III-V semiconductor
Was this page helpful?