An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Measurement Techniques for Superconducting Microwave Resonators Towards Quantum Device Applications
Published
Author(s)
Corey Rae McRae
Abstract
Superconducting qubits, though promising for both near-term problem-solving as well as the development of large-scale quantum computing systems, are limited in performance largely by materials-induced decoherence channels which are maximized at millikelvin temperatures, single photon powers, and microwave frequencies. Superconducting microwave resonators are ideal tools for measuring these materials losses due to their simplicity, well-understood behavior, and sensitivity to these same losses. In order to better understand and mitigate dominant qubit decoherence channels, accurate and precise characterization of superconducting microwave resonator performance is critical. In this paper, current measurement techniques for superconducting microwave resonators are discussed, including experimental set-up, error analysis, and cryogenic calibration of a vector network analyzer.
McRae, C.
(2020),
Measurement Techniques for Superconducting Microwave Resonators Towards Quantum Device Applications, ArXiV, [online], https://arxiv.org/pdf/2006.04718.pdf
(Accessed January 18, 2025)